Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica

被引:0
|
作者
Shu Wei Chou-Chen
Luis A. Barboza
Paola Vásquez
Yury E. García
Juan G. Calvo
Hugo G. Hidalgo
Fabio Sanchez
机构
[1] Universidad de Costa Rica,Centro de Investigación en Matematica Pura y Aplicada
[2] Universidad de Costa Rica,Escuela de Estadística
[3] Universidad de Costa Rica,Escuela de Matemática
[4] University of California Davis,Department of Public Health Sciences
[5] Universidad de Costa Rica,Centro de Investigaciones Geofísicas and Escuela de Física
关键词
Bayesian inference; Climate; Public Health; Spatio-temporal models; Vector-borne disease; 62F15; 62P10; 62P12;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the rapid geographic spread of the Aedes mosquito and the increase in dengue incidence, dengue fever has been an increasing concern for public health authorities in tropical and subtropical countries worldwide. Significant challenges such as climate change, the burden on health systems, and the rise of insecticide resistance highlight the need to introduce new and cost-effective tools for developing public health interventions. Various and locally adapted statistical methods for developing climate-based early warning systems have increasingly been an area of interest and research worldwide. Costa Rica, a country with microclimates and endemic circulation of the dengue virus (DENV) since 1993, provides ideal conditions for developing projection models with the potential to help guide public health efforts and interventions to control and monitor future dengue outbreaks. Climate information was incorporated to model and forecast the dengue cases and relative risks using a Bayesian spatio-temporal model, from 2000 to 2021, in 32 Costa Rican municipalities. This approach is capable of analyzing the spatio-temporal behavior of dengue and also producing reliable predictions.
引用
收藏
页码:687 / 713
页数:26
相关论文
共 50 条
  • [21] INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
    Opitz, Thomas
    Huser, Raphael
    Bakka, Haakon
    Rue, Havard
    EXTREMES, 2018, 21 (03) : 441 - 462
  • [22] Bayesian spatio-temporal model for tuberculosis in India
    Srinivasan, R.
    Venkatesan, P.
    INDIAN JOURNAL OF MEDICAL RESEARCH, 2015, 141 : 478 - 480
  • [23] A Bayesian hierarchical spatio-temporal rainfall model
    Mashford, John
    Song, Yong
    Wang, Q. J.
    Robertson, David
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (02) : 217 - 229
  • [24] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 4 : 33 - 49
  • [25] Improved prediction for a spatio-temporal model
    Gen Nowak
    A. H. Welsh
    Environmental and Ecological Statistics, 2020, 27 : 631 - 648
  • [26] Improved prediction for a spatio-temporal model
    Nowak, Gen
    Welsh, A. H.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2020, 27 (04) : 631 - 648
  • [27] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 7 : 39 - 55
  • [28] Impact of deforestation and climate on spatio-temporal spread of dengue fever in Mexico
    Galeana-Pizana, Jose Mauricio
    Cruz-Bello, Gustavo Manuel
    Caudillo-Cos, Camilo Alberto
    Jimenez-Ortega, Aldo Daniel
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2024, 50
  • [29] A Traffic Prediction Algorithm Based on Bayesian Spatio-Temporal Model in Cellular Network
    Zhang, Zhen
    Liu, Fangfang
    Zeng, Zhimin
    Zhao, Wen
    2017 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2017, : 43 - 48
  • [30] PREDICTION AND IMPUTATION OF SPATIO-TEMPORAL DATA: DENGUE SURVEILLANCE IN THAILAND
    Lessler, J.
    Reich, N. G.
    Iamsirithaworn, S.
    Cummings, D. A. T.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S183 - S183