Spatio-temporal Bayesian model selection for disease mapping

被引:12
|
作者
Carroll, Rachel [1 ]
Lawson, Andrew B. [1 ]
Faes, Christel [2 ]
Kirby, Russell S. [3 ]
Aregay, Mehreteab [1 ]
Watjou, Kevin [2 ]
机构
[1] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC USA
[2] Hasselt Univ, Interuniv Inst Stat & Stat Bioinformat, Hasselt, Belgium
[3] Univ S Florida, Dept Community & Family Hlth, Tampa, FL USA
关键词
BRugs; MCMC; melanoma; model selection; Poisson; VARIABLE SELECTION; EPIDEMIOLOGY; INLA;
D O I
10.1002/env.2410
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor.
引用
收藏
页码:466 / 478
页数:13
相关论文
共 50 条
  • [1] Evaluating the performance of spatio-temporal Bayesian models in disease mapping
    Ugarte, M. D.
    Goicoa, T.
    Ibanez, B.
    Militino, A. R.
    [J]. ENVIRONMETRICS, 2009, 20 (06) : 647 - 665
  • [2] An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting
    Corpas-Burgos, Francisca
    Martinez-Beneito, Miguel A.
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 17
  • [3] Spatio-temporal Bayesian On-line Changepoint Detection with Model Selection
    Knoblauch, Jeremias
    Damoulas, Theodoros
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [4] Spatio-temporal interaction with disease mapping
    Sun, DC
    Tsutakawa, RK
    Kim, H
    He, ZQ
    [J]. STATISTICS IN MEDICINE, 2000, 19 (15) : 2015 - 2035
  • [5] On fitting spatio-temporal disease mapping models using approximate Bayesian inference
    Dolores Ugarte, Maria
    Adin, Aritz
    Goicoa, Tomas
    Fernandez Militino, Ana
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 507 - 530
  • [6] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518
  • [7] Bayesian spatio-temporal model for tuberculosis in India
    Srinivasan, R.
    Venkatesan, P.
    [J]. INDIAN JOURNAL OF MEDICAL RESEARCH, 2015, 141 : 478 - 480
  • [8] A Bayesian hierarchical spatio-temporal rainfall model
    Mashford, John
    Song, Yong
    Wang, Q. J.
    Robertson, David
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (02) : 217 - 229
  • [9] Variable Selection Мethod based on Spatio-temporal Group Lasso and Нierarchical Bayesian Spatio-temporal Мodel
    Wang, Ling
    Kang, Zihao
    [J]. Journal of Geo-Information Science, 2023, 25 (07): : 1312 - 1324
  • [10] Hierarchical spatio-temporal mapping of disease rates
    Waller, LA
    Carlin, BP
    Xia, H
    Gelfand, AE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 607 - 617