Spatio-temporal Bayesian model selection for disease mapping

被引:12
|
作者
Carroll, Rachel [1 ]
Lawson, Andrew B. [1 ]
Faes, Christel [2 ]
Kirby, Russell S. [3 ]
Aregay, Mehreteab [1 ]
Watjou, Kevin [2 ]
机构
[1] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC USA
[2] Hasselt Univ, Interuniv Inst Stat & Stat Bioinformat, Hasselt, Belgium
[3] Univ S Florida, Dept Community & Family Hlth, Tampa, FL USA
关键词
BRugs; MCMC; melanoma; model selection; Poisson; VARIABLE SELECTION; EPIDEMIOLOGY; INLA;
D O I
10.1002/env.2410
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor.
引用
收藏
页码:466 / 478
页数:13
相关论文
共 50 条
  • [41] A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)
    Garcia, J. A.
    Martin, J.
    Naranjo, L.
    Acero, F. J.
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (06): : 878 - 894
  • [42] Geography of broadband faults explored with a Bayesian spatio-temporal statistical model
    Dong, Guanpeng
    Statham, Thomas
    [J]. APPLIED GEOGRAPHY, 2020, 123
  • [43] Bayesian inference for a spatio-temporal model of road traffic collision data
    Hewett, Nicola
    Golightly, Andrew
    Fawcett, Lee
    Thorpe, Neil
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 80
  • [44] Investigating the spatio-temporal variation of hepatitis A in Korea using a Bayesian model
    Jeong, Jaehong
    Kim, Mijeong
    Choi, Jungsoon
    [J]. FRONTIERS IN PUBLIC HEALTH, 2023, 10
  • [45] Bayesian spatio-temporal joint disease mapping of Covid-19 cases and deaths in local authorities of England
    Sahu, Sujit K.
    Bohning, Dankmar
    [J]. SPATIAL STATISTICS, 2022, 49
  • [46] Bayesian spatio-temporal models for stream networks
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M. E.
    Peterson, Erin
    McGree, James J.
    Isaak, Daniel
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [47] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [48] Bayesian spatio-temporal prediction of cancer dynamics
    Vlad, Iulian T.
    Juan, Pablo
    Mateu, Jorge
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) : 857 - 868
  • [49] Bayesian spatio-temporal random coefficient time series (BaST-RCTS) model of infectious disease
    Zhang, Tao
    Zhang, Xingyu
    Ma, Yue
    Zhou, Xiaohua Andrew
    Liu, Yuanyuan
    Feng, Zijian
    Li, Xiaosong
    [J]. MATHEMATICAL BIOSCIENCES, 2014, 258 : 93 - 100
  • [50] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433