Spatio-temporal Bayesian model selection for disease mapping

被引:12
|
作者
Carroll, Rachel [1 ]
Lawson, Andrew B. [1 ]
Faes, Christel [2 ]
Kirby, Russell S. [3 ]
Aregay, Mehreteab [1 ]
Watjou, Kevin [2 ]
机构
[1] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC USA
[2] Hasselt Univ, Interuniv Inst Stat & Stat Bioinformat, Hasselt, Belgium
[3] Univ S Florida, Dept Community & Family Hlth, Tampa, FL USA
关键词
BRugs; MCMC; melanoma; model selection; Poisson; VARIABLE SELECTION; EPIDEMIOLOGY; INLA;
D O I
10.1002/env.2410
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor.
引用
收藏
页码:466 / 478
页数:13
相关论文
共 50 条
  • [21] Spatio-Temporal Inversion Using the Selection Kalman Model
    Conjard, Maxime
    Omre, Henning
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7
  • [22] A hierarchical Bayesian spatio-temporal model for extreme precipitation events
    Ghosh, Souparno
    Mallick, Bani K.
    [J]. ENVIRONMETRICS, 2011, 22 (02) : 192 - 204
  • [23] Urban crime prediction based on spatio-temporal Bayesian model
    Hu, Tao
    Zhu, Xinyan
    Duan, Lian
    Guo, Wei
    [J]. PLOS ONE, 2018, 13 (10):
  • [24] Spatio-temporal quantification of climate model errors in a Bayesian framework
    Arisido, Maeregu Woldeyes
    Gaetan, Carlo
    Zanchettin, Davide
    Lopez-Parages, Jorge
    Rubino, Angelo
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (01) : 111 - 124
  • [25] Bayesian spatio-temporal discard model in a demersal trawl fishery
    Grazia Pennino, M.
    Munoz, Facundo
    Conesa, David
    Lopez-Quilez, Antonio
    Bellido, Jose M.
    [J]. JOURNAL OF SEA RESEARCH, 2014, 90 : 44 - 53
  • [26] Spatio-temporal quantification of climate model errors in a Bayesian framework
    Maeregu Woldeyes Arisido
    Carlo Gaetan
    Davide Zanchettin
    Jorge López-Parages
    Angelo Rubino
    [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33 : 111 - 124
  • [27] A scalable Bayesian nonparametric model for large spatio-temporal data
    Zahra Barzegar
    Firoozeh Rivaz
    [J]. Computational Statistics, 2020, 35 : 153 - 173
  • [28] A scalable Bayesian nonparametric model for large spatio-temporal data
    Barzegar, Zahra
    Rivaz, Firoozeh
    [J]. COMPUTATIONAL STATISTICS, 2020, 35 (01) : 153 - 173
  • [29] Zero-inflated spatio-temporal models for disease mapping
    Torabi, Mahmoud
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (03) : 430 - 444
  • [30] Big problems in spatio-temporal disease mapping: Methods and software
    Orozco-Acosta, Erick
    Adin, Aritz
    Ugarte, Maria Dolores
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 231