A scalable Bayesian nonparametric model for large spatio-temporal data

被引:3
|
作者
Barzegar, Zahra [1 ]
Rivaz, Firoozeh [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
关键词
Large datasets; Stick-breaking process; Non-stationarity; Non-Gaussianity; POSTERIOR CONSISTENCY; SPATIAL PREDICTORS; MIXTURE; REGRESSION; FIELDS;
D O I
10.1007/s00180-019-00905-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Bayesian nonparametric (BNP) approach is an effective tool for building flexible spatio-temporal probability models. Despite the flexibility and attractiveness of this approach, the resulting spatio-temporal models become computationally demanding when datasets are large. This paper develops a class of computationally efficient and easy to implement BNP models for large spatio-temporal data. To be more specific, we introduce a random distribution for the spatio-temporal effects based on a stick-breaking construction in which the atoms are modeled in terms of a basis system. In this framework, a low rank basis approximation and a vector autoregressive process are used to model spatial and temporal dependencies, respectively. We demonstrate that the proposed model is an extension of the Gaussian low rank model with similar computational complexity, hence it offers great scalability for large spatio-temporal data. Through a simulation study, we assess the performance of the proposed model. For illustration, we then analyze a set of data comprised of precipitation measurements.
引用
收藏
页码:153 / 173
页数:21
相关论文
共 50 条
  • [1] A scalable Bayesian nonparametric model for large spatio-temporal data
    Zahra Barzegar
    Firoozeh Rivaz
    [J]. Computational Statistics, 2020, 35 : 153 - 173
  • [2] Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis
    Ma, Ting Fung
    Wang, Fangfang
    Zhu, Jun
    Ives, Anthony R.
    Lewinska, Katarzyna E.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (02) : 279 - 298
  • [3] Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis
    Ting Fung Ma
    Fangfang Wang
    Jun Zhu
    Anthony R. Ives
    Katarzyna E. Lewińska
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 279 - 298
  • [4] A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses
    Zhang, Linlin
    Guindani, Michele
    Versace, Francesco
    Vannucci, Marina
    [J]. NEUROIMAGE, 2014, 95 : 162 - 175
  • [5] Scalable spatio-temporal Bayesian analysis of high-dimensional electroencephalography data
    Mohammed, Shariq
    Dey, Dipak K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (01): : 107 - 128
  • [6] A BAYESIAN SPATIO-TEMPORAL GEOSTATISTICAL MODEL WITH AN AUXILIARY LATTICE FOR LARGE DATASETS
    Xu, Ganggang
    Liang, Faming
    Genton, Marc G.
    [J]. STATISTICA SINICA, 2015, 25 (01) : 61 - 79
  • [7] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [8] Bayesian inference for a spatio-temporal model of road traffic collision data
    Hewett, Nicola
    Golightly, Andrew
    Fawcett, Lee
    Thorpe, Neil
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 80
  • [9] Bayesian spatio-temporal model for tuberculosis in India
    Srinivasan, R.
    Venkatesan, P.
    [J]. INDIAN JOURNAL OF MEDICAL RESEARCH, 2015, 141 : 478 - 480
  • [10] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116