Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis

被引:1
|
作者
Ma, Ting Fung [1 ]
Wang, Fangfang [2 ]
Zhu, Jun [3 ]
Ives, Anthony R. [4 ]
Lewinska, Katarzyna E. [5 ,6 ]
机构
[1] Univ South Carolina, Dept Stat, Columbia, SC USA
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[3] Univ Wisconsin Madison, Dept Stat, Madison, WI USA
[4] Univ Wisconsin, Dept Integrat Biol, Madison, WI USA
[5] Univ Wisconsin Madison, Dept Forest & Wildlife Ecol, Madison, WI USA
[6] Humboldt Univ, Geog Dept, D-10099 Berlin, Germany
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Environmental statistics; Remote sensing; Sparse matrix operations; Spatio-temporal autoregression; DYNAMIC PANEL-DATA; BAYESIAN-INFERENCE; MODELS; DESIGN;
D O I
10.1007/s13253-022-00525-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the rapid advances of data acquisition techniques, spatio-temporal data are becoming increasingly abundant in a diverse array of disciplines. Here, we develop spatio-temporal regression methodology for analyzing large amounts of spatially referenced data collected over time, motivated by environmental studies utilizing remotely sensed satellite data. In particular, we specify a semiparametric autoregressive model without the usual Gaussian assumption and devise a computationally scalable procedure that enables the regression analysis of large datasets. We estimate the model parameters by maximum pseudolikelihood and show that the computational complexity can be reduced from cubic to linear of the sample size. Asymptotic properties under suitable regularity conditions are further established that inform the computational procedure to be efficient and scalable. A simulation study is conducted to evaluate the finite-sample properties of the parameter estimation and statistical inference. We illustrate our methodology by a dataset with over 2.96 million observations of annual land surface temperature, and comparison with an existing state-of-the-art approach to spatio-temporal regression highlights the advantages of our method. Supplementary materials accompanying this paper appear online.
引用
收藏
页码:279 / 298
页数:20
相关论文
共 50 条
  • [1] Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis
    Ting Fung Ma
    Fangfang Wang
    Jun Zhu
    Anthony R. Ives
    Katarzyna E. Lewińska
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 279 - 298
  • [2] A scalable Bayesian nonparametric model for large spatio-temporal data
    Zahra Barzegar
    Firoozeh Rivaz
    [J]. Computational Statistics, 2020, 35 : 153 - 173
  • [3] A scalable Bayesian nonparametric model for large spatio-temporal data
    Barzegar, Zahra
    Rivaz, Firoozeh
    [J]. COMPUTATIONAL STATISTICS, 2020, 35 (01) : 153 - 173
  • [4] A semiparametric spatio-temporal model for solar irradiance data
    Patrick, Joshua D.
    Harvill, Jane L.
    Hansen, Clifford W.
    [J]. RENEWABLE ENERGY, 2016, 87 : 15 - 30
  • [5] Spatio-Temporal Analysis of Large Air Pollution Data
    Bin Tarek, Mirza Farhan
    Asaduzzaman, Md
    Patwary, Mohammad
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2018, : 221 - 224
  • [6] A spatio-temporal regression model for the analysis of functional MRI data
    Katanoda, K
    Matsuda, Y
    Sugishita, M
    [J]. NEUROIMAGE, 2002, 17 (03) : 1415 - 1428
  • [7] Spatio-temporal functional regression on paleoecological data
    Bel, Liliane
    Bar-Hen, Avner
    Petit, Remy
    Cheddadi, Rachid
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (04) : 695 - 704
  • [8] Spatio-temporal functional regression on paleoecological data
    Bar-Hen, Avner
    Bel, Liliane
    Cheddadi, Rachid
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 53 - +
  • [9] Semiparametric spatio-temporal frailty modeling
    Banerjee, S
    Carlin, BP
    [J]. ENVIRONMETRICS, 2003, 14 (05) : 523 - 535
  • [10] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116