A scalable Bayesian nonparametric model for large spatio-temporal data

被引:3
|
作者
Barzegar, Zahra [1 ]
Rivaz, Firoozeh [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
关键词
Large datasets; Stick-breaking process; Non-stationarity; Non-Gaussianity; POSTERIOR CONSISTENCY; SPATIAL PREDICTORS; MIXTURE; REGRESSION; FIELDS;
D O I
10.1007/s00180-019-00905-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Bayesian nonparametric (BNP) approach is an effective tool for building flexible spatio-temporal probability models. Despite the flexibility and attractiveness of this approach, the resulting spatio-temporal models become computationally demanding when datasets are large. This paper develops a class of computationally efficient and easy to implement BNP models for large spatio-temporal data. To be more specific, we introduce a random distribution for the spatio-temporal effects based on a stick-breaking construction in which the atoms are modeled in terms of a basis system. In this framework, a low rank basis approximation and a vector autoregressive process are used to model spatial and temporal dependencies, respectively. We demonstrate that the proposed model is an extension of the Gaussian low rank model with similar computational complexity, hence it offers great scalability for large spatio-temporal data. Through a simulation study, we assess the performance of the proposed model. For illustration, we then analyze a set of data comprised of precipitation measurements.
引用
收藏
页码:153 / 173
页数:21
相关论文
共 50 条
  • [31] Nonparametric estimation of the spatio-temporal covariance structure
    Yang, Kai
    Qiu, Peihua
    [J]. STATISTICS IN MEDICINE, 2019, 38 (23) : 4555 - 4565
  • [32] Data Reduction in Very Large Spatio-Temporal Datasets
    Whelan, Michael
    Nhien An Le Khac
    Kechadi, M-Tahar
    [J]. 19TH IEEE INTERNATIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2010), 2010, : 104 - 109
  • [33] Urban crime prediction based on spatio-temporal Bayesian model
    Hu, Tao
    Zhu, Xinyan
    Duan, Lian
    Guo, Wei
    [J]. PLOS ONE, 2018, 13 (10):
  • [34] A hierarchical Bayesian spatio-temporal model for extreme precipitation events
    Ghosh, Souparno
    Mallick, Bani K.
    [J]. ENVIRONMETRICS, 2011, 22 (02) : 192 - 204
  • [35] Spatio-temporal quantification of climate model errors in a Bayesian framework
    Arisido, Maeregu Woldeyes
    Gaetan, Carlo
    Zanchettin, Davide
    Lopez-Parages, Jorge
    Rubino, Angelo
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (01) : 111 - 124
  • [36] Bayesian spatio-temporal discard model in a demersal trawl fishery
    Grazia Pennino, M.
    Munoz, Facundo
    Conesa, David
    Lopez-Quilez, Antonio
    Bellido, Jose M.
    [J]. JOURNAL OF SEA RESEARCH, 2014, 90 : 44 - 53
  • [37] Spatio-temporal quantification of climate model errors in a Bayesian framework
    Maeregu Woldeyes Arisido
    Carlo Gaetan
    Davide Zanchettin
    Jorge López-Parages
    Angelo Rubino
    [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33 : 111 - 124
  • [38] A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data
    Castruccio, Stefano
    Ombao, Hernando
    Genton, Marc G.
    [J]. BIOMETRICS, 2018, 74 (03) : 823 - 833
  • [39] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [40] Nonparametric Threshold Model of Zero-Inflated Spatio-Temporal Data with Application to Shifts in Jellyfish Distribution
    Liu, Hai
    Ciannelli, Lorenzo
    Decker, Mary Beth
    Ladd, Carol
    Chan, Kung-Sik
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2011, 16 (02) : 185 - 201