Stability of the magnetic Couette-Taylor flow

被引:0
|
作者
B. Scarpellini
机构
[1] Universität Basel,Mathematisches Institut
关键词
35Q30; 35Q35; 76E07; 76E25; Magnetic Couette-Taylor problem; Ljapounov stability; Bloch space; small data techniques;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the magnetic Couette-Taylor problem, that is, a conducting fluid between two infinite rotating cylinders, subject to a magnetic field parallel to the rotation axis. This configuration admits an equilibrium solution of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (0,ar + br^{{ - 1}} ,0,0,0,\alpha + \beta \log r). $ \end{document} It is shown that this equilibrium is Ljapounov stable under small perturbations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{L}^{2} (\Gamma ), $ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma = \{ (r,\varphi ,z)/r_{1} < r < r_{2} ,\varphi \in [0,2\pi ],z \in \mathbb{R}\} , $ \end{document} provided that the parameters a, b, α, β are small. The methods of proof are a combination of an energy method, based on Bloch space analysis and small data techniques.
引用
收藏
页码:412 / 438
页数:26
相关论文
共 50 条
  • [31] Dynamical Mechanism and Energy Conversion of the Couette-Taylor Flow
    Wang, Heyuan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (08):
  • [32] Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow
    Beck, C
    Lewis, GS
    Swinney, HL
    PHYSICAL REVIEW E, 2001, 63 (03): : 353031 - 353034
  • [33] Heat generation in a Couette-Taylor flow multicylinder system
    Mamonov, V. N.
    Miskiv, N. B.
    Nazarov, A. D.
    Serov, A. F.
    Terekhov, V. I.
    THERMOPHYSICS AND AEROMECHANICS, 2019, 26 (05) : 683 - 692
  • [34] Liquid-liquid Couette-Taylor flow investigations
    Dluska, E
    Wronski, S
    INZYNIERIA CHEMICZNA I PROCESOWA, 2004, 25 (03): : 813 - 818
  • [35] MASS-TRANSPORT IN TURBULENT COUETTE-TAYLOR FLOW
    TAM, WY
    SWINNEY, HL
    PHYSICAL REVIEW A, 1987, 36 (03): : 1374 - 1381
  • [36] Heat generation in a Couette-Taylor flow multicylinder system
    V. N. Mamonov
    N. B. Miskiv
    A. D. Nazarov
    A. F. Serov
    V. I. Terekhov
    Thermophysics and Aeromechanics, 2019, 26 : 683 - 692
  • [37] Preferential accumulation of bubbles in Couette-Taylor flow patterns
    Climent, Eric
    Simonnet, Marie
    Magnaudet, Jacques
    PHYSICS OF FLUIDS, 2007, 19 (08)
  • [38] THE INFLUENCE OF AN AXIAL MEAN FLOW ON THE COUETTE-TAYLOR PROBLEM
    RAFFAI, R
    LAURE, P
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1993, 12 (03) : 277 - 288
  • [39] STRANGE ATTRACTORS IN WEAKLY TURBULENT COUETTE-TAYLOR FLOW
    BRANDSTATER, A
    SWINNEY, HL
    PHYSICAL REVIEW A, 1987, 35 (05): : 2207 - 2220
  • [40] Highly turbulent Couette-Taylor bubbly flow patterns
    Atkhen, K
    Fontaine, J
    Wesfreid, JE
    JOURNAL OF FLUID MECHANICS, 2000, 422 : 55 - 68