Dynamical Mechanism and Energy Conversion of the Couette-Taylor Flow

被引:2
|
作者
Wang, Heyuan [1 ,2 ]
机构
[1] Shenyang Normal Univ, Coll Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R China
[2] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Couette-Taylor flow; dynamical mechanism; Kolmogorov system; chaos; KOLMOGOROV; TRUNCATION; SYSTEMS; CYCLE;
D O I
10.1142/S0218127419501001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the dynamical mechanism and energy conversion of the Couette-Taylor flow. The Couette-Taylor flow chaotic system is transformed into the Kolmogorov type system, which is decomposed into four types of torques. Combining different torques, the key factors of chaos generation and the physical interpretation of the Couette Taylor flow are studied. We further investigate the conversion among Hamiltonian, kinetic and potential energies, as well as the correlation between the energies and the Reynolds number. It is concluded that the combination of the four torques is necessary to produce chaos, and the system can produce chaos only when the dissipative torques match the driving (external) torques. Any combination of three types of torques cannot produce chaos. Moreover, we introduce the Casimir function to analyze the system dynamics, and choose its derivation to formulate the energy conversion. The bound of chaotic attractor is obtained by the Casimir function and Lagrange multiplier. It is found that the Casimir function reflects the energy conversion and the distance between the orbit and the equilibria.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Air bubbles in a Couette-Taylor flow
    Atkhen, K
    Fontaine, J
    Aider, JL
    Wesfreid, JE
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (2-3): : 207 - 213
  • [2] Stability of the magnetic Couette-Taylor flow
    Scarpellini, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (03): : 412 - 438
  • [3] Stability of the magnetic Couette-Taylor flow
    B. Scarpellini
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 412 - 438
  • [4] Turbulent bursts in Couette-Taylor flow
    Marcus, PS
    FLUID MECHANICS AND THE ENVIRONMENT: DYNAMICAL APPROACHES, 2001, 566 : 183 - 200
  • [5] Experiments on the Couette-Taylor flow with an axial flow
    Tsameret, A.
    Steinberg, V.
    NATO Advanced Study Institutes Series, Series C: Mathematical and Physical Sciences, 1991, 349
  • [6] Turbulent bursts in Couette-Taylor flow
    Coughlin, K
    Marcus, PS
    PHYSICAL REVIEW LETTERS, 1996, 77 (11) : 2214 - 2217
  • [7] Bifurcations and chaos in couette-taylor flow
    Sun, Yong-da
    Lu, Chai
    Liu, Shu-Sheng
    Proceedings of the Asia Pacific Physics Conference, 1988,
  • [8] THE STABILITY OF COUETTE-TAYLOR ELECTROHYDRODYNAMIC FLOW
    KURYACHII, AP
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1989, 53 (03): : 345 - 349
  • [9] Simulation of viscoelastic fluids: Couette-Taylor flow
    Kupferman, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) : 22 - 59
  • [10] Scalings and structures in turbulent Couette-Taylor flow
    She, ZS
    Ren, K
    Lewis, GS
    Swinney, HL
    PHYSICAL REVIEW E, 2001, 64 (01):