Stability of the magnetic Couette-Taylor flow

被引:0
|
作者
B. Scarpellini
机构
[1] Universität Basel,Mathematisches Institut
关键词
35Q30; 35Q35; 76E07; 76E25; Magnetic Couette-Taylor problem; Ljapounov stability; Bloch space; small data techniques;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the magnetic Couette-Taylor problem, that is, a conducting fluid between two infinite rotating cylinders, subject to a magnetic field parallel to the rotation axis. This configuration admits an equilibrium solution of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (0,ar + br^{{ - 1}} ,0,0,0,\alpha + \beta \log r). $ \end{document} It is shown that this equilibrium is Ljapounov stable under small perturbations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{L}^{2} (\Gamma ), $ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma = \{ (r,\varphi ,z)/r_{1} < r < r_{2} ,\varphi \in [0,2\pi ],z \in \mathbb{R}\} , $ \end{document} provided that the parameters a, b, α, β are small. The methods of proof are a combination of an energy method, based on Bloch space analysis and small data techniques.
引用
收藏
页码:412 / 438
页数:26
相关论文
共 50 条
  • [1] Stability of the magnetic Couette-Taylor flow
    Scarpellini, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (03): : 412 - 438
  • [2] THE STABILITY OF COUETTE-TAYLOR ELECTROHYDRODYNAMIC FLOW
    KURYACHII, AP
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1989, 53 (03): : 345 - 349
  • [3] Numerical analyses of a Couette-Taylor flow in the presence of a magnetic field
    Tagawa, T.
    Kaneda, M.
    14TH INTERNATIONAL COUETTE TAYLOR WORKSHOP, 2005, 14 : 48 - 54
  • [4] Air bubbles in a Couette-Taylor flow
    Atkhen, K
    Fontaine, J
    Aider, JL
    Wesfreid, JE
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (2-3): : 207 - 213
  • [5] Turbulent bursts in Couette-Taylor flow
    Marcus, PS
    FLUID MECHANICS AND THE ENVIRONMENT: DYNAMICAL APPROACHES, 2001, 566 : 183 - 200
  • [6] Experiments on the Couette-Taylor flow with an axial flow
    Tsameret, A.
    Steinberg, V.
    NATO Advanced Study Institutes Series, Series C: Mathematical and Physical Sciences, 1991, 349
  • [7] Turbulent bursts in Couette-Taylor flow
    Coughlin, K
    Marcus, PS
    PHYSICAL REVIEW LETTERS, 1996, 77 (11) : 2214 - 2217
  • [8] Bifurcations and chaos in couette-taylor flow
    Sun, Yong-da
    Lu, Chai
    Liu, Shu-Sheng
    Proceedings of the Asia Pacific Physics Conference, 1988,
  • [9] On the stability of the Couette-Taylor flow between rotating porous cylinders with radial flow
    Ilin, Konstantin
    Morgulis, Andrey
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 80 : 174 - 186
  • [10] Simulation of viscoelastic fluids: Couette-Taylor flow
    Kupferman, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) : 22 - 59