Stability of the magnetic Couette-Taylor flow

被引:0
|
作者
B. Scarpellini
机构
[1] Universität Basel,Mathematisches Institut
关键词
35Q30; 35Q35; 76E07; 76E25; Magnetic Couette-Taylor problem; Ljapounov stability; Bloch space; small data techniques;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the magnetic Couette-Taylor problem, that is, a conducting fluid between two infinite rotating cylinders, subject to a magnetic field parallel to the rotation axis. This configuration admits an equilibrium solution of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (0,ar + br^{{ - 1}} ,0,0,0,\alpha + \beta \log r). $ \end{document} It is shown that this equilibrium is Ljapounov stable under small perturbations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{L}^{2} (\Gamma ), $ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma = \{ (r,\varphi ,z)/r_{1} < r < r_{2} ,\varphi \in [0,2\pi ],z \in \mathbb{R}\} , $ \end{document} provided that the parameters a, b, α, β are small. The methods of proof are a combination of an energy method, based on Bloch space analysis and small data techniques.
引用
收藏
页码:412 / 438
页数:26
相关论文
共 50 条
  • [41] Couette-Taylor实验系统
    孙永达
    力学与实践, 1988, (06) : 60 - 60
  • [42] Frictional drag reduction in bubbly Couette-Taylor flow
    Murai, Yuichi
    Oiwa, Hiroshi
    Takeda, Yasushi
    PHYSICS OF FLUIDS, 2008, 20 (03)
  • [43] DYNAMICS NEAR A TRICRITICAL POINT IN COUETTE-TAYLOR FLOW
    AITTA, A
    PHYSICAL REVIEW LETTERS, 1989, 62 (18) : 2116 - 2119
  • [44] ON THE COUETTE-TAYLOR INSTABILITY IN FERROHYDRODYNAMICS
    STILES, PJ
    KAGAN, M
    HUBBARD, JB
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1987, 120 (02) : 430 - 438
  • [45] EFFECTS OF KALLIROSCOPE FLOW VISUALIZATION PARTICLES ON ROTATING COUETTE-TAYLOR FLOW
    DOMINGUEZLERMA, MA
    AHLERS, G
    CANNELL, DS
    PHYSICS OF FLUIDS, 1985, 28 (04) : 1204 - 1206
  • [46] INFLUENCE OF SURFACE IRREGULARITIES ON HYDRODYNAMIC INSTABILITIES IN COUETTE-TAYLOR FLOW
    Gaied, Lamia
    Berrich, Emna
    Aloui, Fethi
    Lippert, Marc
    Keirsbulck, Laurent
    Bigerelle, Maxence
    PROCEEDINGE OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [47] Numerical and Experimental Study on the Effects of Taylor Number on the Wavelength of the Couette-Taylor Flow
    Monfared, M.
    Shirani, E.
    Aloui, F.
    Salimpour, M. R.
    JOURNAL OF APPLIED FLUID MECHANICS, 2016, 9 : 49 - 58
  • [48] Extended local balance model of turbulence and Couette-Taylor flow
    Balonishnikov, AM
    PHYSICAL REVIEW E, 2000, 61 (02): : 1390 - 1394
  • [49] INTENSIFICATION OF STARCH PROCESSING USING APPARATUS WITH COUETTE-TAYLOR FLOW
    Hubacz, Robert
    Ohmura, Naoto
    Dluska, Ewa
    JOURNAL OF FOOD PROCESS ENGINEERING, 2013, 36 (06) : 774 - 785
  • [50] THERMAL TREATMENT OF STARCH SLURRY IN COUETTE-TAYLOR FLOW APPARATUS
    Hubacz, Robert
    Masuda, Hayato
    Horie, Takafumi
    Ohmura, Naoto
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2017, 38 (03): : 345 - 361