In this paper we consider the magnetic Couette-Taylor problem, that is, a conducting fluid between two infinite rotating cylinders, subject to a magnetic field parallel to the rotation axis. This configuration admits an equilibrium solution of the form
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$
(0,ar + br^{{ - 1}} ,0,0,0,\alpha + \beta \log r).
$
\end{document} It is shown that this equilibrium is Ljapounov stable under small perturbations in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$
\mathcal{L}^{2} (\Gamma ),
$
\end{document} where
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$
\Gamma = \{ (r,\varphi ,z)/r_{1} < r < r_{2} ,\varphi \in [0,2\pi ],z \in \mathbb{R}\} ,
$
\end{document} provided that the parameters a, b, α, β are small. The methods of proof are a combination of an energy method, based on Bloch space analysis and small data techniques.