(I) We prove that the (maximum) number of monotone paths in a geometric triangulation of n points in the plane is O(1.7864n). This improves an earlier upper bound of O(1.8393n); the current best lower bound is Ω(1.7003n). (II) Given a planar geometric graph G with n vertices, we show that the number of monotone paths in G can be computed in O(n2) time.
机构:
Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53706 USAUniv Wisconsin, Dept Comp Sci, Milwaukee, WI 53706 USA
Dumitrescu, Adrian
Mandal, Ritankar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53706 USAUniv Wisconsin, Dept Comp Sci, Milwaukee, WI 53706 USA
Mandal, Ritankar
Toth, Csaba D.
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Northridge, Dept Math, Los Angeles, CA USA
Tufts Univ, Dept Comp Sci, Medford, MA 02155 USAUniv Wisconsin, Dept Comp Sci, Milwaukee, WI 53706 USA