Random veering triangulations are not geometric

被引:6
|
作者
Futer, David [1 ]
Taylor, Samuel [1 ]
Worden, William [2 ]
机构
[1] Temple Univ, Dept Math, 1805 N Broad St, Philadelphia, PA 19122 USA
[2] Rice Univ, Dept Math, MS 136,6100 Main St, Houston, TX 77005 USA
关键词
Mapping class group; random walk; pseudo-Anosov; veering triangulation; KLEINIAN SURFACE GROUPS; TEICHMULLER; GEODESICS; CLASSIFICATION; 3-MANIFOLDS; INVARIANTS; FOLIATIONS; THEOREM; SPACE;
D O I
10.4171/GGD/575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every pseudo-Anosov mapping class phi defines an associated veering triangulation tau(phi) of a punctured mapping torus. We show that generically, tau(phi) is not geometric. Here, the word "generic" can be taken either with respect to random walks in mapping class groups or with respect to counting geodesics in moduli space. Tools in the proof include Teichmfiller theory, the Ending Lamination Theorem, study of the Thurston norm, and rigorous computation.
引用
收藏
页码:1077 / 1126
页数:50
相关论文
共 50 条
  • [1] Non-geometric Veering Triangulations
    Hodgson, Craig D.
    Issa, Ahmad
    Segerman, Henry
    [J]. EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 17 - 45
  • [2] Experimental Statistics of Veering Triangulations
    Worden, William
    [J]. EXPERIMENTAL MATHEMATICS, 2020, 29 (01) : 101 - 122
  • [3] A polynomial invariant for veering triangulations
    Landry, Michael P.
    Minsky, Yair N.
    Taylor, Samuel J.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (02) : 731 - 788
  • [4] From loom spaces to veering triangulations
    Schleimer, Saul
    Segerman, Henry
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 419 - 462
  • [5] Explicit angle structures for veering triangulations
    Futer, David
    Gueritaud, Francois
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 205 - 235
  • [6] Veering triangulations and Cannon Thurston maps
    Gueritaud, Francois
    [J]. JOURNAL OF TOPOLOGY, 2016, 9 (03) : 957 - 983
  • [7] Veering triangulations and the Thurston norm: Homology to isotopy
    Landry, Michael P.
    [J]. ADVANCES IN MATHEMATICS, 2022, 396
  • [8] Fibered faces, veering triangulations, and the arc complex
    Yair N. Minsky
    Samuel J. Taylor
    [J]. Geometric and Functional Analysis, 2017, 27 : 1450 - 1496
  • [9] Taut branched surfaces from veering triangulations
    Landry, Michael
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (02): : 1089 - 1114
  • [10] Fibered faces, veering triangulations, and the arc complex
    Minsky, Yair N.
    Taylor, Samuel J.
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (06) : 1450 - 1496