Monotone Paths in Geometric Triangulations

被引:1
|
作者
Dumitrescu, Adrian [1 ]
Mandal, Ritankar [1 ]
Toth, Csaba D. [2 ,3 ]
机构
[1] Univ Wisconsin, Milwaukee, WI 53201 USA
[2] Calif State Univ Northridge, Los Angeles, CA USA
[3] Tufts Univ, Medford, MA 02155 USA
来源
Combinatorial Algorithms | 2016年 / 9843卷
基金
美国国家科学基金会;
关键词
Monotone path; Triangulation; Counting algorithm; SIMPLEX-ALGORITHM; HIRSCH CONJECTURE; PLANAR GRAPHS; RANDOM-EDGE; BOUNDS; NUMBER; CYCLES; MATCHINGS; POLYHEDRA;
D O I
10.1007/978-3-319-44543-4_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
(I) We prove that the (maximum) number of monotone paths in a triangulation of n points in the plane is O(1.8027(n)). This improves an earlier upper bound of O(1.8393(n)); the current best lower bound is O(1.7034(n)). (II) Given a planar straight-line graph G with n vertices, we show that the number of monotone paths in G can be computed in O(n(2)) time.
引用
收藏
页码:411 / 422
页数:12
相关论文
共 50 条
  • [1] Monotone Paths in Geometric Triangulations
    Adrian Dumitrescu
    Ritankar Mandal
    Csaba D. Tóth
    Theory of Computing Systems, 2018, 62 : 1490 - 1524
  • [2] Monotone Paths in Geometric Triangulations
    Dumitrescu, Adrian
    Mandal, Ritankar
    Toth, Csaba D.
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (06) : 1490 - 1524
  • [3] S-hypersimplices, pulling triangulations, and monotone paths
    Manecke, Sebastian
    Sanyal, Raman
    So, Jeonghoon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 14
  • [4] Geometric triangulations and flips
    Tahar, Guillaume
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (07) : 620 - 623
  • [5] Geometric bistellar moves relate geometric triangulations
    Kalelkar, Tejas
    Phanse, Advait
    TOPOLOGY AND ITS APPLICATIONS, 2020, 285
  • [6] Random veering triangulations are not geometric
    Futer, David
    Taylor, Samuel
    Worden, William
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (03) : 1077 - 1126
  • [7] Ideal triangulations and geometric transitions
    Danciger, Jeffrey
    JOURNAL OF TOPOLOGY, 2014, 7 (04) : 1118 - 1154
  • [8] GEOMETRIC REALIZATION OF MOBIUS TRIANGULATIONS
    Jose Chavez, Maria
    Fijavz, Gasper
    Marquez, Alberto
    Nakamoto, Atsuhiro
    Suarez, Esperanza
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 23 (01) : 221 - 232
  • [9] Monotone paths on polytopes
    Christos A. Athanasiadis
    Paul H. Edelman
    Victor Reiner
    Mathematische Zeitschrift, 2000, 235 : 315 - 334
  • [10] Geometric transformations in plane triangulations
    Kawarabayashi, K
    Nakamoto, A
    Oda, Y
    Watanabe, M
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 217 - 221