Monotone Paths in Geometric Triangulations

被引:0
|
作者
Adrian Dumitrescu
Ritankar Mandal
Csaba D. Tóth
机构
[1] University of Wisconsin–Milwaukee,Department of Computer Science
[2] California State University,Department of Mathematics
[3] Tufts University,Department of Computer Science
来源
关键词
Monotone path; Triangulation; Counting algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
(I) We prove that the (maximum) number of monotone paths in a geometric triangulation of n points in the plane is O(1.7864n). This improves an earlier upper bound of O(1.8393n); the current best lower bound is Ω(1.7003n). (II) Given a planar geometric graph G with n vertices, we show that the number of monotone paths in G can be computed in O(n2) time.
引用
收藏
页码:1490 / 1524
页数:34
相关论文
共 50 条
  • [41] Computing monotone disjoint paths on polytopes
    Avis, David
    Kaluzny, Bohdan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (04) : 328 - 343
  • [42] Monotone Simultaneous Paths Embeddings in Rd
    Bremner, David
    Devillers, Olivier
    Glisse, Marc
    Lazard, Sylvain
    Liotta, Giuseppe
    Mchedlidze, Tamara
    Moroz, Guillaume
    Whitesides, Sue
    Wismath, Stephen
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [43] Computing monotone disjoint paths on polytopes
    David Avis
    Bohdan Kaluzny
    Journal of Combinatorial Optimization, 2008, 16 : 328 - 343
  • [44] Long monotone paths in line arrangements
    Balogh, J
    Regev, O
    Smyth, C
    Steiger, W
    Szegedy, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (02) : 167 - 176
  • [45] Monotone paths on zonotopes and oriented matroids
    Athanasiadis, CA
    Santos, F
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (06): : 1121 - 1140
  • [46] Long Monotone Paths in Line Arrangements
    József Balogh
    Oded Regev
    Clifford Smyth
    William Steiger
    Mario Szegedy
    Discrete & Computational Geometry, 2004, 32 : 167 - 176
  • [47] Constrained paths in the flip-graph of regular triangulations
    Pournin, L.
    Liebling, Th. M.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 37 (02): : 134 - 140
  • [48] Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
    Bonichon, Nicolas
    Bose, Prosenjit
    Carmi, Paz
    Kostitsyna, Irina
    Lubiw, Anna
    Verdonschot, Sander
    GRAPH DRAWING AND NETWORK VISUALIZATION (GD 2016), 2016, 9801 : 519 - 531
  • [49] An Upper Bound on Pachner Moves Relating Geometric Triangulations
    Kalelkar, Tejas
    Phanse, Advait
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (03) : 809 - 830
  • [50] Monotone volume formulas for geometric flows
    Mueller, Reto
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 643 : 39 - 57