On the Problem of Parameter Estimation in Exponential Sums

被引:0
|
作者
F. Filbir
H. N. Mhaskar
J. Prestin
机构
[1] Helmholtz Center Munich,Institute of Biomathematics and Biometry
[2] California State University,Department of Mathematics
[3] University of Lübeck,Institute of Mathematics
来源
关键词
Frequency analysis; Spectral analysis problem; Parameter estimation; Exponential sums; Prony method; 94A12; 42C15; 65T40;
D O I
暂无
中图分类号
学科分类号
摘要
Let I≥1 be an integer, ω0=0<ω1<⋯<ωI≤π, and for j=0,…,I, aj∈ℂ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{-j}={\overline{{a_{j}}}}$\end{document}, ω−j=−ωj, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{j}\not=0$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j\not=0$\end{document}. We consider the following problem: Given finitely many noisy samples of an exponential sum of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{x}(k)= \sum_{j=-I}^I a_j\exp(-i\omega _jk) +\epsilon (k), \quad k=-2N,\ldots,2N,$$\end{document} where ϵ(k) are random variables with mean zero, each in the range [−ϵ,ϵ] for some ϵ>0, determine approximately the frequencies ωj. We combine the features of several recent works to use the available information to construct the moments \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{y}_{N}(k)$\end{document} of a positive measure on the unit circle. In the absence of noise, the support of this measure is exactly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\exp(-i\omega _{j}) : a_{j}\not=0\}$\end{document}. This support can be recovered as the zeros of the monic orthogonal polynomial of an appropriate degree on the unit circle with respect to this measure. In the presence of noise, this orthogonal polynomial structure allows us to provide error bounds in terms of ϵ and N. It is not our intention to propose a new algorithm. Instead, we prove that a preprocessing of the raw moments \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{x}(k)$\end{document} to obtain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{y}_{N}(k)$\end{document} enables us to obtain rigorous performance guarantees for existing algorithms. We demonstrate also that the proposed preprocessing enhances the performance of existing algorithms.
引用
收藏
页码:323 / 343
页数:20
相关论文
共 50 条
  • [1] On the Problem of Parameter Estimation in Exponential Sums
    Filbir, F.
    Mhaskar, H. N.
    Prestin, J.
    [J]. CONSTRUCTIVE APPROXIMATION, 2012, 35 (03) : 323 - 343
  • [2] PARAMETER ESTIMATION FOR MULTIVARIATE EXPONENTIAL SUMS
    Potts, Daniel
    Tasche, Manfred
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2013, 40 : 204 - 224
  • [3] Parameter Estimation for Bivariate Exponential Sums
    Diederichs, Benedikt
    Iske, Armin
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 493 - 497
  • [4] A review of the parameter estimation problem of fitting positive exponential sums to empirical data
    Holmström, K
    Petersson, J
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 126 (01) : 31 - 61
  • [5] PARAMETER ESTIMATION OF MONOMIAL-EXPONENTIAL SUMS
    Fermo, Luisa
    Van Der Mee, Cornelis
    Seatzu, Sebastiano
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 249 - 261
  • [6] Parameter estimation for exponential sums by approximate Prony method
    Potts, Daniel
    Tasche, Manfred
    [J]. SIGNAL PROCESSING, 2010, 90 (05) : 1631 - 1642
  • [7] EXPONENTIAL-SUMS WITH A PARAMETER
    HUXLEY, MN
    WATT, N
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 : 233 - 252
  • [8] Parameter estimation of monomial-exponential sums in one and two variables
    Fermo, L.
    van der Mee, C.
    Seatzu, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 576 - 586
  • [9] Parameter estimation for nonincreasing exponential sums by Prony-like methods
    Potts, Daniel
    Tasche, Manfred
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1024 - 1039
  • [10] Guaranteed parameter set estimation for exponential sums: The three-terms case
    Garloff, Juergen
    Idriss, Ismail
    Smith, Andrew P.
    [J]. RELIABLE COMPUTING, 2007, 13 (04) : 351 - 359