PARAMETER ESTIMATION FOR MULTIVARIATE EXPONENTIAL SUMS

被引:0
|
作者
Potts, Daniel [1 ]
Tasche, Manfred [2 ]
机构
[1] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
[2] Univ Rostock, Inst Math, D-18051 Rostock, Germany
关键词
parameter estimation; multivariate exponential sum; multivariate exponential fitting problem; harmonic retrieval; sparse approximate Prony method; sparse approximate representation of signals; FINITE RATE; SIGNALS; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recovery of signal parameters from noisy sampled data is an essential problem in digital signal processing. In this paper, we discuss the numerical solution of the following parameter estimation problem. Let h(0) be a multivariate exponential sum, i.e., h(0) is a finite linear combination of complex exponentials with distinct frequency vectors. Determine all parameters of h(0), i.e., all frequency vectors, all coefficients, and the number of exponentials, if finitely many sampled data of h(0) are given. Using Ingham-type inequalities, the Riesz stability of finitely many multivariate exponentials with well-separated frequency vectors is discussed in continuous as well as discrete norms. Furthermore, we show that a rectangular Fourier-type matrix has a bounded condition number, if the frequency vectors are well-separated and if the number of samples is sufficiently large. Then we reconstruct the parameters of an exponential sum h(0) by a novel algorithm, the so-called sparse approximate Prony method (SAPM), where we use only some data sampled along few straight lines. The first part of SAPM estimates the frequency vectors using the approximate Prony method in the univariate case. The second part of SAPM computes all coefficients by solving an overdetermined linear Vandermonde-type system. Numerical experiments show the performance of our method.
引用
收藏
页码:204 / 224
页数:21
相关论文
共 50 条
  • [1] On the Problem of Parameter Estimation in Exponential Sums
    Filbir, F.
    Mhaskar, H. N.
    Prestin, J.
    [J]. CONSTRUCTIVE APPROXIMATION, 2012, 35 (03) : 323 - 343
  • [2] Parameter Estimation for Bivariate Exponential Sums
    Diederichs, Benedikt
    Iske, Armin
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 493 - 497
  • [3] On the Problem of Parameter Estimation in Exponential Sums
    F. Filbir
    H. N. Mhaskar
    J. Prestin
    [J]. Constructive Approximation, 2012, 35 : 323 - 343
  • [5] PARAMETER ESTIMATION OF MONOMIAL-EXPONENTIAL SUMS
    Fermo, Luisa
    Van Der Mee, Cornelis
    Seatzu, Sebastiano
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 249 - 261
  • [6] Parameter estimation for exponential sums by approximate Prony method
    Potts, Daniel
    Tasche, Manfred
    [J]. SIGNAL PROCESSING, 2010, 90 (05) : 1631 - 1642
  • [7] EXPONENTIAL-SUMS WITH A PARAMETER
    HUXLEY, MN
    WATT, N
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 : 233 - 252
  • [8] Parameter estimation of monomial-exponential sums in one and two variables
    Fermo, L.
    van der Mee, C.
    Seatzu, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 576 - 586
  • [9] Parameter estimation for nonincreasing exponential sums by Prony-like methods
    Potts, Daniel
    Tasche, Manfred
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1024 - 1039
  • [10] Guaranteed parameter set estimation for exponential sums: The three-terms case
    Garloff, Juergen
    Idriss, Ismail
    Smith, Andrew P.
    [J]. RELIABLE COMPUTING, 2007, 13 (04) : 351 - 359