PARAMETER ESTIMATION OF MONOMIAL-EXPONENTIAL SUMS

被引:0
|
作者
Fermo, Luisa [1 ]
Van Der Mee, Cornelis [1 ]
Seatzu, Sebastiano [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, I-09123 Cagliari, Italy
关键词
nonlinear approximation; parameter estimation; matrix pencils; MATRIX PENCIL METHOD; COMPLEX EXPONENTIALS; PRONYS METHOD; APPROXIMATION; POLYNOMIALS; MIXTURES; ESPRIT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a matrix-pencil method for the identification of parameters and coefficients of a monomial-exponential sum which can be considered as an extension of existing matrix-pencil methods for the parameter estimation of exponential sums. The technique adopted is based on properties of the finite difference equations and it overcomes the difficulty of their extension via the invertibility of the generalized Vandermonde matrix. As a result, a matrix-pencil method based on the GSVD or the SVD is proposed which allows us to identify both simple and multiple parameters. Applications of this method to various examples show its effectiveness.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [1] Parameter estimation of monomial-exponential sums in one and two variables
    Fermo, L.
    van der Mee, C.
    Seatzu, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 576 - 586
  • [2] On the Problem of Parameter Estimation in Exponential Sums
    Filbir, F.
    Mhaskar, H. N.
    Prestin, J.
    [J]. CONSTRUCTIVE APPROXIMATION, 2012, 35 (03) : 323 - 343
  • [3] Parameter Estimation for Bivariate Exponential Sums
    Diederichs, Benedikt
    Iske, Armin
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 493 - 497
  • [4] On the Problem of Parameter Estimation in Exponential Sums
    F. Filbir
    H. N. Mhaskar
    J. Prestin
    [J]. Constructive Approximation, 2012, 35 : 323 - 343
  • [5] PARAMETER ESTIMATION FOR MULTIVARIATE EXPONENTIAL SUMS
    Potts, Daniel
    Tasche, Manfred
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2013, 40 : 204 - 224
  • [6] Parameter estimation for exponential sums by approximate Prony method
    Potts, Daniel
    Tasche, Manfred
    [J]. SIGNAL PROCESSING, 2010, 90 (05) : 1631 - 1642
  • [7] EXPLICIT BOUNDS ON MONOMIAL AND BINOMIAL EXPONENTIAL SUMS
    Cochrane, Todd
    Pinner, Christopher
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02): : 323 - 349
  • [8] EXPONENTIAL-SUMS WITH A PARAMETER
    HUXLEY, MN
    WATT, N
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 : 233 - 252
  • [9] Parameter estimation for nonincreasing exponential sums by Prony-like methods
    Potts, Daniel
    Tasche, Manfred
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1024 - 1039
  • [10] Guaranteed parameter set estimation for exponential sums: The three-terms case
    Garloff, Juergen
    Idriss, Ismail
    Smith, Andrew P.
    [J]. RELIABLE COMPUTING, 2007, 13 (04) : 351 - 359