On the Problem of Parameter Estimation in Exponential Sums

被引:0
|
作者
F. Filbir
H. N. Mhaskar
J. Prestin
机构
[1] Helmholtz Center Munich,Institute of Biomathematics and Biometry
[2] California State University,Department of Mathematics
[3] University of Lübeck,Institute of Mathematics
来源
关键词
Frequency analysis; Spectral analysis problem; Parameter estimation; Exponential sums; Prony method; 94A12; 42C15; 65T40;
D O I
暂无
中图分类号
学科分类号
摘要
Let I≥1 be an integer, ω0=0<ω1<⋯<ωI≤π, and for j=0,…,I, aj∈ℂ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{-j}={\overline{{a_{j}}}}$\end{document}, ω−j=−ωj, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{j}\not=0$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j\not=0$\end{document}. We consider the following problem: Given finitely many noisy samples of an exponential sum of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{x}(k)= \sum_{j=-I}^I a_j\exp(-i\omega _jk) +\epsilon (k), \quad k=-2N,\ldots,2N,$$\end{document} where ϵ(k) are random variables with mean zero, each in the range [−ϵ,ϵ] for some ϵ>0, determine approximately the frequencies ωj. We combine the features of several recent works to use the available information to construct the moments \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{y}_{N}(k)$\end{document} of a positive measure on the unit circle. In the absence of noise, the support of this measure is exactly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\exp(-i\omega _{j}) : a_{j}\not=0\}$\end{document}. This support can be recovered as the zeros of the monic orthogonal polynomial of an appropriate degree on the unit circle with respect to this measure. In the presence of noise, this orthogonal polynomial structure allows us to provide error bounds in terms of ϵ and N. It is not our intention to propose a new algorithm. Instead, we prove that a preprocessing of the raw moments \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{x}(k)$\end{document} to obtain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{y}_{N}(k)$\end{document} enables us to obtain rigorous performance guarantees for existing algorithms. We demonstrate also that the proposed preprocessing enhances the performance of existing algorithms.
引用
收藏
页码:323 / 343
页数:20
相关论文
共 50 条
  • [41] Bounds on exponential sums and the polynomial waring problem mod p
    Cochrane, T
    Pinner, C
    Rosenhouse, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 319 - 336
  • [42] Exponential sums on An
    Alan Adolphson
    Steven Sperber
    [J]. Israel Journal of Mathematics, 2000, 120 : 3 - 21
  • [43] SEQUENTIAL ESTIMATION OF A PARAMETER OF AN EXPONENTIAL-DISTRIBUTION
    ISOGAI, E
    UNO, C
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1994, 46 (01) : 77 - 82
  • [44] Exponential asymptotics in the small parameter exit problem
    Sugiura, M
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1996, 144 : 137 - 154
  • [45] Parameter estimation for censored exponential random variables
    Smith, L. Donnie
    Blair, W. Dale
    [J]. PROCEEDINGS OF THE 40TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2008, : 289 - 292
  • [46] UNBIASED ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL-DISTRIBUTION
    BELYAYEV, YK
    MAKAROV, AP
    [J]. ENGINEERING CYBERNETICS, 1982, 20 (03): : 78 - 81
  • [47] TLS based methods for exponential parameter estimation
    Chen, H
    VanHuffel, S
    Dowling, EM
    DeGroat, RD
    [J]. RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 295 - 305
  • [48] Model selection and parameter estimation for exponential signals
    Ramaswami, A
    Bretthorst, GL
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 9 - 14
  • [49] Estimation in two-parameter exponential distributions
    Rahman, M
    Pearson, LM
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2001, 70 (04) : 371 - 386
  • [50] On parameter estimation for exponential dispersion ARMA models
    Song, PXK
    Feng, DH
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2005, 26 (06) : 843 - 862