Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision

被引:20
|
作者
Vromman, Marieke [1 ]
Anckaert, Jasper [1 ]
Bortoluzzi, Stefania [2 ]
Buratin, Alessia [2 ]
Chen, Chia-Ying [3 ]
Chu, Qinjie [4 ,5 ]
Chuang, Trees-Juen [3 ]
Dehghannasiri, Roozbeh [6 ]
Dieterich, Christoph [7 ]
Dong, Xin [8 ]
Flicek, Paul [9 ]
Gaffo, Enrico [2 ]
Gu, Wanjun [10 ]
He, Chunjiang [8 ]
Hoffmann, Steve [11 ]
Izuogu, Osagie [9 ]
Jackson, Michael S. [12 ]
Jakobi, Tobias [13 ]
Lai, Eric C. [14 ]
Nuytens, Justine [1 ]
Salzman, Julia [6 ]
Santibanez-Koref, Mauro [12 ]
Stadler, Peter [15 ]
Thas, Olivier [16 ]
Eynde, Eveline Vanden [1 ]
Verniers, Kimberly [1 ]
Wen, Guoxia [17 ]
Westholm, Jakub [18 ]
Yang, Li [19 ,20 ]
Ye, Chu-Yu [4 ,5 ]
Yigit, Nurten [1 ]
Yuan, Guo-Hua [21 ]
Zhang, Jinyang
Zhao, Fangqing [22 ]
Vandesompele, Jo [1 ,22 ]
Volders, Pieter-Jan [1 ]
机构
[1] Univ Ghent, Canc Res Inst Ghent CRIG, Dept Biomol Med, OncoRNALab, Ghent, Belgium
[2] Univ Padua, Dept Mol Med, Padua, Italy
[3] Acad Sinica, Genom Res Ctr, Taipei City, Taiwan
[4] Zhejiang Univ, Inst Crop Sci, Hangzhou, Zhejiang, Peoples R China
[5] Zhejiang Univ, Inst Bioinformat, Hangzhou, Zhejiang, Peoples R China
[6] Stanford Univ, Dept Biomed Data Sci & Biochem, Stanford, CA USA
[7] Univ Hosp Heidelberg, Klaus Tschira Inst Integrat Computat Cardiol, German Ctr Cardiovasc Res DZHK, Dept Internal Med 3, Heidelberg, Germany
[8] Wuhan Univ, Sch Basic Med Sci, Dept Med Genet, Wuhan, Peoples R China
[9] EMBL EBI, Hinxton, England
[10] Nanjing Univ Chinese Med, Collaborat Innovat Ctr Jiangsu Prov Canc Prevent &, Sch Artificial Intelligence & Informat Technol, Nanjing, Peoples R China
[11] Leibniz Inst Aging, Fritz Lipmann Inst FLI, Computat Biol Grp, Jena, Germany
[12] Newcastle Univ, Biosci Inst, Fac Med Sci, Newcastle Upon Tyne, England
[13] Univ Arizona, Coll Med Phoenix, Translat Cardiovasc Res Ctr, Phoenix, AZ USA
[14] Sloan Kettering Inst, New York, NY USA
[15] Univ Leipzig, Dept Comp Sci, Bioinformat Grp, Leipzig, Germany
[16] Hasselt Univ, Data Sci Inst, I Biostat, Hasselt, Belgium
[17] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing, Peoples R China
[18] Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Natl Bioinformat Infrastructure Sweden, Stockholm, Sweden
[19] Fudan Univ Fudan, Childrens Hosp, Ctr Mol Med, Fudan, Peoples R China
[20] Fudan Univ, Inst Biomed Sci, Shanghai Key Lab Med Epigenet, Int Lab Med Epigenet & Metab,Minist Sci & Technol, Fudan, Peoples R China
[21] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, Shanghai, Peoples R China
[22] Chinese Acad Sci, Beijing Inst Life Sci, Beijing, Peoples R China
基金
英国惠康基金; 美国国家科学基金会; 中国国家自然科学基金; 比利时弗兰德研究基金会;
关键词
CIRCULAR RNAS; IDENTIFICATION; FUSION; TRANS;
D O I
10.1038/s41592-023-01944-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation. This study describes benchmarking and validation of computational tools for detecting circRNAs, finding most to be highly precise with variations in sensitivity and total detection. The study also finds over 315,000 putative human circRNAs.
引用
收藏
页码:1159 / +
页数:15
相关论文
共 50 条
  • [21] Tools and applications for large-scale display walls
    Wallace, G
    Anshus, OJ
    Bi, P
    Chen, HQ
    Clark, D
    Cook, P
    Finkelstein, A
    Funkhouser, T
    Gupta, A
    Hibbs, M
    Li, K
    Liu, ZY
    Samanta, R
    Sukthankar, R
    Troyanskaya, O
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2005, 25 (04) : 24 - 33
  • [22] OpenBioLink: a benchmarking framework for large-scale biomedical link prediction
    Breit, Anna
    Ott, Simon
    Agibetov, Asan
    Samwald, Matthias
    [J]. BIOINFORMATICS, 2020, 36 (13) : 4097 - 4098
  • [23] Large-scale benchmarking of wake models for offshore wind farms
    Nygaard, N. G.
    Poulsen, L.
    Svensson, E.
    Pedersen, J. G.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2022, 2022, 2265
  • [24] VizNet: Towards A Large-Scale Visualization Learning and Benchmarking Repository
    Hu, Kevin
    Gaikwad, Snehalkumar 'Neil' S.
    Hulsebos, Madelon
    Bakker, Michiel A.
    Zgraggen, Emanuel
    Hidalgo, Cesar
    Kraska, Tim
    Li, Guoliang
    Satyanarayan, Arvind
    Demiralp, Cagatay
    [J]. CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2019,
  • [25] BENCHMARKING OF ARMP SYSTEM AGAINST LARGE-SCALE MOCKUP EXPERIMENTS
    MOSTELLER, RD
    DIRILTEN, M
    EICH, WJ
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1978, 30 (NOV): : 690 - 692
  • [26] A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking
    Duan, Keyu
    Liu, Zirui
    Wang, Peihao
    Zheng, Wenqing
    Zhou, Kaixiong
    Chen, Tianlong
    Hu, Xia
    Wang, Zhangyang
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [27] Characterizing large-scale quantum computers via cycle benchmarking
    Erhard, Alexander
    Wallman, Joel J.
    Postler, Lukas
    Meth, Michael
    Stricker, Roman
    Martinez, Esteban A.
    Schindler, Philipp
    Monz, Thomas
    Emerson, Joseph
    Blatt, Rainer
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [28] Benchmarking large-scale distributed convex quadratic programming algorithms
    Kozma, Attila
    Conte, Christian
    Diehl, Moritz
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (01): : 191 - 214
  • [29] Characterizing large-scale quantum computers via cycle benchmarking
    Alexander Erhard
    Joel J. Wallman
    Lukas Postler
    Michael Meth
    Roman Stricker
    Esteban A. Martinez
    Philipp Schindler
    Thomas Monz
    Joseph Emerson
    Rainer Blatt
    [J]. Nature Communications, 10
  • [30] BYO: A Unified Framework for Benchmarking Large-Scale Graph Containers
    Wheatman, Brian
    Dong, Xiaojun
    Shen, Zheqi
    Dhulipala, Laxman
    Lacki, Jakub
    Pandey, Prashant
    Xu, Helen
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (09): : 2307 - 2320