OpenBioLink: a benchmarking framework for large-scale biomedical link prediction

被引:26
|
作者
Breit, Anna [1 ]
Ott, Simon [1 ]
Agibetov, Asan [1 ]
Samwald, Matthias [1 ]
机构
[1] Med Univ Vienna, Ctr Med Stat Informat & Intelligent Syst, Sect Artificial Intelligence & Decis Support, A-1090 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
D O I
10.1093/bioinformatics/btaa274
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recently, novel machine-learning algorithms have shown potential for predicting undiscovered links in biomedical knowledge networks. However, dedicated benchmarks for measuring algorithmic progress have not yet emerged. With OpenBioLink, we introduce a large-scale, high-quality and highly challenging biomedical link prediction benchmark to transparently and reproducibly evaluate such algorithms. Furthermore, we present preliminary baseline evaluation results.
引用
收藏
页码:4097 / 4098
页数:2
相关论文
共 50 条
  • [1] BYO: A Unified Framework for Benchmarking Large-Scale Graph Containers
    Wheatman, Brian
    Dong, Xiaojun
    Shen, Zheqi
    Dhulipala, Laxman
    Lacki, Jakub
    Pandey, Prashant
    Xu, Helen
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (09): : 2307 - 2320
  • [2] Supervised Link Discovery on Large-Scale Biomedical Concept Networks
    Katukuri, Jayashima
    Xie, Ying
    Raghavan, Vijay V.
    Gupta, Ashish
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM 2011), 2011, : 562 - 568
  • [3] DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms
    Corbellini, Alejandro
    Godoy, Daniela
    Mateos, Cristian
    Schiaffino, Silvia
    Zunino, Alejandro
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 78 : 474 - 480
  • [4] An Incremental Learning framework for Large-scale CTR Prediction
    Katsileros, Petros
    Mandilaras, Nikiforos
    Mallis, Dimitrios
    Pitsikalis, Vassilis
    Theodorakis, Stavros
    Chamiel, Gil
    [J]. PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 490 - 493
  • [5] Ensemble of Diverse Sparsifications for Link Prediction in Large-Scale Networks
    Chen, Yi-Ling
    Chen, Ming-Syan
    Yu, Philip S.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 51 - 60
  • [6] LSDH: A Hashing Approach for Large-Scale Link Prediction in Microblogs
    Liu, Dawei
    Wang, Yuanzhuo
    Jia, Yantao
    Li, Jingyuan
    Yu, Zhihua
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 3120 - 3121
  • [7] Benchmarking for, large-scale placement and beyond
    Adya, AN
    Yildiz, MC
    Markov, IL
    Villarrubia, PG
    Parakh, PN
    Madden, PH
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2004, 23 (04) : 472 - 487
  • [8] Location prediction in large-scale social networks: an in-depth benchmarking study
    Nur Al Hasan Haldar
    Jianxin Li
    Mark Reynolds
    Timos Sellis
    Jeffrey Xu Yu
    [J]. The VLDB Journal, 2019, 28 : 623 - 648
  • [9] Location prediction in large-scale social networks: an in-depth benchmarking study
    Haldar, Nur Al Hasan
    Li, Jianxin
    Reynolds, Mark
    Sellis, Timos
    Yu, Jeffrey Xu
    [J]. VLDB JOURNAL, 2019, 28 (05): : 623 - 648
  • [10] Learning Structural Features of Nodes in Large-Scale Networks for Link Prediction
    Zhiyuli, Aakas
    Liang, Xun
    Zhou, Xiaoping
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 4286 - 4287