Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature

被引:0
|
作者
Prabal Adhikari
Jens O. Andersen
Martin A. Mojahed
机构
[1] St. Olaf College,Physics Department, Faculty of Natural Sciences and Mathematics
[2] Norwegian University of Science and Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider two-flavor chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT) at finite isospin chemical potential μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and finite temperature T. We calculate the effective potential and the quark and pion condensates as functions of T and μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} to next-to-leading order in the low-energy expansion in the presence of a pionic source. We map out the phase diagram in the μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document}–T plane. Numerically, we find that the transition to the pion-condensed phase is second order in the region of validity of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, which is in agreement with model calculations and lattice simulations. Finally, we calculate the pressure to two-loop order in the symmetric phase for nonzero μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and find that χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT seems to be converging very well.
引用
收藏
相关论文
共 50 条
  • [41] Magnetic vortex lattices in finite isospin chiral perturbation theory
    Adhikari, Prabal
    PHYSICS LETTERS B, 2019, 790 : 211 - 217
  • [42] Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature
    Dempsey, Ross
    Klebanov, Igor R.
    Pufu, Silviu S.
    Sogaard, Benjamin T.
    Zan, Bernardo
    PHYSICAL REVIEW LETTERS, 2024, 132 (03)
  • [43] Transition temperature(s) of magnetized two-flavor holographic QCD
    Callebaut, N.
    Dudal, D.
    PHYSICAL REVIEW D, 2013, 87 (10):
  • [44] Chiral properties of two-flavor QCD in small volume and at large lattice spacing
    DeGrand, T
    Schaefer, S
    PHYSICAL REVIEW D, 2005, 72 (05):
  • [45] Pion condensation in the two-flavor chiral quark model at finite baryochemical potential
    Herpay, T.
    Kovacs, P.
    PHYSICAL REVIEW D, 2008, 78 (11):
  • [46] Competition of inhomogeneous chiral phases and two-flavor color superconductivity in the NJL model
    Lakaschus, Phillip
    Buballa, Michael
    Rischke, Dirk H.
    PHYSICAL REVIEW D, 2021, 103 (03)
  • [47] Chiral phase transition in two-flavor QCD from an imaginary chemical potential
    Bonati, Claudio
    de Forcrand, Philippe
    D'Elia, Massimo
    Philipsen, Owe
    Sanfilippo, Francesco
    PHYSICAL REVIEW D, 2014, 90 (07):
  • [48] Isospin violating decay Ds* → Dsπ0 chiral perturbation theory
    Yang, Bin
    Wang, Bo
    Meng, Lu
    Zhu, Shi-Lin
    PHYSICAL REVIEW D, 2020, 101 (05)
  • [49] Two-flavor lattice-QCD simulation in the ε regime with exact chiral symmetry
    Fukaya, H.
    Aoki, S.
    Chiu, T. W.
    Hashimoto, S.
    Kaneko, T.
    Matsufuru, H.
    Noaki, J.
    Ogawa, K.
    Okamoto, M.
    Onogi, T.
    Yamada, N.
    PHYSICAL REVIEW LETTERS, 2007, 98 (17)
  • [50] Critical line of two-flavor QCD at finite isospin or baryon densities from imaginary chemical potentials
    Cea, Paolo
    Cosmai, Leonardo
    D'Elia, Massimo
    Papa, Alessandro
    Sanfilippo, Francesco
    PHYSICAL REVIEW D, 2012, 85 (09):