Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature

被引:0
|
作者
Prabal Adhikari
Jens O. Andersen
Martin A. Mojahed
机构
[1] St. Olaf College,Physics Department, Faculty of Natural Sciences and Mathematics
[2] Norwegian University of Science and Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider two-flavor chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT) at finite isospin chemical potential μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and finite temperature T. We calculate the effective potential and the quark and pion condensates as functions of T and μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} to next-to-leading order in the low-energy expansion in the presence of a pionic source. We map out the phase diagram in the μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document}–T plane. Numerically, we find that the transition to the pion-condensed phase is second order in the region of validity of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, which is in agreement with model calculations and lattice simulations. Finally, we calculate the pressure to two-loop order in the symmetric phase for nonzero μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and find that χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT seems to be converging very well.
引用
收藏
相关论文
共 50 条
  • [21] Two-flavor quark matter in the perturbation theory with full thermodynamic consistency
    XU JianFeng
    PENG GuangXiong
    LU ZhenYan
    CUI ShuaiShuai
    Science China(Physics,Mechanics & Astronomy), 2015, (04) : 29 - 34
  • [22] Two-flavor quark matter in the perturbation theory with full thermodynamic consistency
    JianFeng Xu
    GuangXiong Peng
    ZhenYan Lu
    ShuaiShuai Cui
    Science China Physics, Mechanics & Astronomy, 2015, 58 : 1 - 6
  • [23] Two-flavor quark matter in the perturbation theory with full thermodynamic consistency
    Xu JianFeng
    Peng GuangXiong
    Lu ZhenYan
    Cui ShuaiShuai
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2015, 58 (04) : 1 - 6
  • [24] Two-flavor lattice QCD in the ε regime and chiral random matrix theory
    Fukaya, H.
    Aoki, S.
    Chiu, T. W.
    Hashimoto, S.
    Kaneko, T.
    Matsufuru, H.
    Noaki, J.
    Ogawa, K.
    Onogi, T.
    Yamada, N.
    PHYSICAL REVIEW D, 2007, 76 (05):
  • [25] Chiral perturbation theory for nonzero chiral imbalance
    Espriu, D.
    Gomez Nicola, A.
    Vioque-Rodriguez, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [26] Kaon thresholds and two-flavor chiral expansions for hyperons
    Jiang, F. -J.
    Tiburzi, B. C.
    Walker-Loud, A.
    PHYSICS LETTERS B, 2011, 695 (1-4) : 329 - 336
  • [27] Two-flavor QCD simulation with exact chiral symmetry
    Aoki, S.
    Fukaya, H.
    Hashimoto, S.
    Ishikawa, K-I.
    Kanaya, K.
    Kaneko, T.
    Matsufuru, H.
    Okamoto, M.
    Okawa, M.
    Onogi, T.
    Ukawa, A.
    Yamada, N.
    Yoshie, T.
    PHYSICAL REVIEW D, 2008, 78 (01):
  • [28] The phases of isospin-asymmetric matter in the two-flavor NJL model
    Lawley, S
    Bentz, W
    Thomas, AW
    PHYSICS LETTERS B, 2006, 632 (04) : 495 - 500
  • [29] Masses and decay constants of pseudoscalar mesons to two loops in two-flavor partially quenched chiral perturbation theory -: art. no. 074502
    Bijnens, J
    Lähde, TA
    PHYSICAL REVIEW D, 2005, 72 (07):
  • [30] Scaling of chiral order parameter in two-flavor QCD
    Iwasaki, Y
    Kanaya, K
    Kaya, S
    Yoshie, T
    PHYSICAL REVIEW LETTERS, 1997, 78 (02) : 179 - 182