Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature

被引:0
|
作者
Prabal Adhikari
Jens O. Andersen
Martin A. Mojahed
机构
[1] St. Olaf College,Physics Department, Faculty of Natural Sciences and Mathematics
[2] Norwegian University of Science and Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider two-flavor chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT) at finite isospin chemical potential μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and finite temperature T. We calculate the effective potential and the quark and pion condensates as functions of T and μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} to next-to-leading order in the low-energy expansion in the presence of a pionic source. We map out the phase diagram in the μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document}–T plane. Numerically, we find that the transition to the pion-condensed phase is second order in the region of validity of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, which is in agreement with model calculations and lattice simulations. Finally, we calculate the pressure to two-loop order in the symmetric phase for nonzero μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and find that χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT seems to be converging very well.
引用
收藏
相关论文
共 50 条
  • [31] Nonequilibrium chiral perturbation theory and disoriented chiral condensates
    Nicola, AG
    HADRON PHYSICS: EFFECTIVE THEORIES OF LOW ENERGY QCD, 2000, 508 : 204 - 213
  • [32] Transport theory for a two-flavor color superconductor
    Litim, DF
    Manuel, C
    PHYSICAL REVIEW LETTERS, 2001, 87 (05) : 52002 - 1
  • [33] Convergence of the Chiral Expansion in Two-Flavor Lattice QCD
    Noaki, J.
    Aoki, S.
    Chiu, T. W.
    Fukaya, H.
    Hashimoto, S.
    Hsieh, T. H.
    Kaneko, T.
    Matsufuru, H.
    Onogi, T.
    Shintani, E.
    Yamada, N.
    PHYSICAL REVIEW LETTERS, 2008, 101 (20)
  • [34] Charmonium at high temperature in two-flavor QCD
    Aarts, Gert
    Allton, Chris
    Oktay, Mehmet Bugrahan
    Peardon, Mike
    Skullerud, Jon-Ivar
    PHYSICAL REVIEW D, 2007, 76 (09):
  • [35] Inhomogeneities in the two-flavor chiral Gross-Neveu model
    Lenz, Julian J.
    Mandl, Michael
    Wipf, Andreas
    PHYSICAL REVIEW D, 2022, 105 (03)
  • [36] Finite isospin chiral perturbation theory in a magnetic field
    Adhikari, Prabal
    Cohen, Thomas D.
    Sakowitz, Julia
    PHYSICAL REVIEW C, 2015, 91 (04):
  • [37] Effects of the anomaly on the two-flavor QCD chiral phase transition
    Chandrasekharan, Shailesh
    Mehta, Abhijit C.
    PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [38] Pion and η-meson mass splitting at the two-flavor chiral crossover
    Heller, Markus
    Mitter, Mario
    PHYSICAL REVIEW D, 2016, 94 (07)
  • [39] The chiral limit of the two-flavor lattice Schwinger model with Wilson fermions
    Gattringer, C
    Hip, I
    Lang, CB
    PHYSICS LETTERS B, 1999, 466 (2-4) : 287 - 292
  • [40] Topological susceptibility in two-flavor lattice QCD with exact chiral symmetry
    Aoki, S.
    Chiu, T. W.
    Fukaya, H.
    Hashimoto, S.
    Hsieh, T. H.
    Kaneko, T.
    Matsufuru, H.
    Noaki, J.
    Ogawa, K.
    Onogi, T.
    Yamada, N.
    PHYSICS LETTERS B, 2008, 665 (04) : 294 - 297