Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature

被引:0
|
作者
Prabal Adhikari
Jens O. Andersen
Martin A. Mojahed
机构
[1] St. Olaf College,Physics Department, Faculty of Natural Sciences and Mathematics
[2] Norwegian University of Science and Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider two-flavor chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT) at finite isospin chemical potential μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and finite temperature T. We calculate the effective potential and the quark and pion condensates as functions of T and μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} to next-to-leading order in the low-energy expansion in the presence of a pionic source. We map out the phase diagram in the μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document}–T plane. Numerically, we find that the transition to the pion-condensed phase is second order in the region of validity of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, which is in agreement with model calculations and lattice simulations. Finally, we calculate the pressure to two-loop order in the symmetric phase for nonzero μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and find that χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT seems to be converging very well.
引用
收藏
相关论文
共 50 条
  • [1] Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature
    Adhikari, Prabal
    Andersen, Jens O.
    Mojahed, Martin A.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):
  • [2] Two-flavor chiral perturbation theory at nonzero isospin: pion condensation at zero temperature
    Prabal Adhikari
    Jens O. Andersen
    Patrick Kneschke
    The European Physical Journal C, 2019, 79
  • [3] Two-flavor chiral perturbation theory at nonzero isospin: pion condensation at zero temperature
    Adhikari, Prabal
    Andersen, Jens O.
    Kneschke, Patrick
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (10):
  • [4] Two-flavor condensates in chiral dynamics: Temperature and isospin density effects
    Loewe, M
    Villavicencio, C
    PHYSICAL REVIEW D, 2005, 71 (09): : 1 - 9
  • [5] Hyperons in two-flavor chiral perturbation theory
    Tiburzi, Brian C.
    Walker-Loud, Andre
    PHYSICS LETTERS B, 2008, 669 (3-4) : 246 - 253
  • [6] Staggered chiral perturbation theory in the two-flavor case
    Du, Xining
    PHYSICAL REVIEW D, 2010, 82 (01):
  • [7] Hyperon axial charges in two-flavor chiral perturbation theory
    Jiang, Fu-Jiun
    Tiburzi, Brian C.
    PHYSICAL REVIEW D, 2009, 80 (07):
  • [8] Hyperon electromagnetic properties in two-flavor chiral perturbation theory
    Jiang, Fu-Jiun
    Tiburzi, Brian C.
    PHYSICAL REVIEW D, 2010, 81 (03):
  • [9] Nucleons in two-flavor partially-quenched chiral perturbation theory
    Beane, SR
    Savage, MJ
    NUCLEAR PHYSICS A, 2002, 709 : 319 - 344
  • [10] Two-flavor QCD phases and condensates at finite isospin chemical potential
    Zhang, Zhao
    Liu, Yu-Xin
    PHYSICAL REVIEW C, 2007, 75 (03):