Short cycles in repeated exponentiation modulo a prime

被引:0
|
作者
Lev Glebsky
Igor E. Shparlinski
机构
[1] Universidad Autónoma de San Luis Potosí,Instituto de Investigación en Comunicación Óptica
[2] Macquarie University,Department of Computing
来源
关键词
Discrete logarithm; Cycle; Dynamical system; 11A07; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Given a prime p, we consider the dynamical system generated by repeated exponentiations modulo p, that is, by the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \mapsto f_g(u)}$$\end{document}, where fg(u) ≡ gu (mod p) and 0 ≤ fg(u) ≤ p − 1. This map is in particular used in a number of constructions of cryptographically secure pseudorandom generators. We obtain nontrivial upper bounds on the number of fixed points and short cycles in the above dynamical system.
引用
收藏
页码:35 / 42
页数:7
相关论文
共 50 条
  • [41] Reducibility type of polynomials modulo a prime
    Harrington, Joshua
    Jones, Lenny
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [42] ON THE DISTRIBUTION OF QUADRATIC RESIDUES MODULO A PRIME
    WALUM, H
    [J]. JOURNAL OF NUMBER THEORY, 1982, 15 (02) : 248 - 251
  • [43] Double and triple sums modulo a prime
    Gyarmati, Katalin
    Konyagin, Sergei
    Ruzsa, Imre Z.
    [J]. ADDITIVE COMBINATORICS, 2007, 43 : 271 - 277
  • [44] Classification theorems for sumsets modulo a prime
    Nguyen, Hoi H.
    Vu, Van H.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 936 - 959
  • [45] THE PARTITION FUNCTION MODULO PRIME POWERS
    Boylan, Matthew
    Webb, John J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (04) : 2169 - 2206
  • [46] On the distribution of primitive roots modulo a prime
    Yi, Y
    Zhang, WP
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (3-4): : 383 - 391
  • [47] Integrability of Discrete Equations Modulo a Prime
    Kanki, Masataka
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [48] A POLYNOMIAL FORM FOR LOGARITHMS MODULO A PRIME
    WELLS, AL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (06) : 845 - 846
  • [49] RECOVERING ZEROS OF POLYNOMIALS MODULO A PRIME
    Gomez, Domingo
    Gutierrez, Jaime
    [J]. MATHEMATICS OF COMPUTATION, 2014, 83 (290) : 2953 - 2965
  • [50] CONGRUENCE MODULO-A POWER OF A PRIME
    MONZINGO, MG
    [J]. FIBONACCI QUARTERLY, 1976, 14 (01): : 23 - 24