Reducibility type of polynomials modulo a prime

被引:0
|
作者
Harrington, Joshua [1 ]
Jones, Lenny [2 ]
机构
[1] Cedar Crest Muhlenberg Coll, Dept Math, Allentown, PA 18104 USA
[2] Shippensburg Univ, Dept Math, Shippensburg, PA 17257 USA
关键词
Cyclic polynomials; Linear recurrence sequence; FAMILY;
D O I
10.1007/s13226-023-00501-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (x) is an element of Z[x] be a monic polynomial that is irreducible over Q, and suppose that deg(f) = N >= 2. For a prime p not dividing the discriminant of f (x), we define the reducibility type of f (x) modulo p to be (d(1), d(2), . . . , d(t)) (p) if f (x) factors into distinct irreducibles g(i) (x) is an element of F-p[x] as f (x) = g(1)(x)g(2)(x) center dot center dot center dot g(t)(x), where deg(g(i)) = d(i) with d(1) <= d(2) <= center dot center dot center dot <= d(t). Let Upsilon(f) := (U-n)(n >= 0) be the Nth order linear recurrence sequence with initial conditions U-0 = U-1 = center dot center dot center dot = UN-2 = 0 and UN-1 = 1, such that f (x) is the characteristic polynomial of Upsilon(f). In this article, we show, in certain circumstances, how the value modulo p of a particular term of Upsilon(f) determines the reducibility type of f (x) modulo p.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Factoring Hecke polynomials modulo a prime
    Conrey, JB
    Farmer, DW
    Wallace, PJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) : 123 - 130
  • [2] POLYNOMIALS REDUCIBLE MODULO EVERY PRIME
    CHILDS, L
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (05): : 390 - 391
  • [3] RECOVERING ZEROS OF POLYNOMIALS MODULO A PRIME
    Gomez, Domingo
    Gutierrez, Jaime
    [J]. MATHEMATICS OF COMPUTATION, 2014, 83 (290) : 2953 - 2965
  • [4] Reducibility of polynomials f(x, y) modulo p
    Ruppert, WM
    [J]. JOURNAL OF NUMBER THEORY, 1999, 77 (01) : 62 - 70
  • [5] ON POLYNOMIALS REDUCIBLE MODULO EVERY PRIME IDEAL
    CHATLAND, H
    MANN, HB
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06): : 458 - 458
  • [6] Root sets of polynomials modulo prime powers
    Maulik, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 93 (01) : 125 - 140
  • [7] ON THE FACTORIZATIONS OF CUBIC POLYNOMIALS WITH THE SAME DISCRIMINANT MODULO A PRIME
    Klaska, Jiri
    Skula, Ladislav
    [J]. MATHEMATICA SLOVACA, 2018, 68 (05) : 987 - 1000
  • [8] Distribution of harmonic sums and Bernoulli polynomials modulo a prime
    Garaev, Moubariz Z.
    Luca, Florian
    Shparlinski, Igor E.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 855 - 865
  • [9] Distribution of harmonic sums and Bernoulli polynomials modulo a prime
    Moubariz Z. Garaev
    Florian Luca
    Igor E. Shparlinski
    [J]. Mathematische Zeitschrift, 2006, 253 : 855 - 865
  • [10] Distribution of alternative power sums and Euler polynomials modulo a prime
    Li, Yan
    Kim, Min-Soo
    Hu, Su
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (1-2): : 19 - 25