Distribution of harmonic sums and Bernoulli polynomials modulo a prime

被引:1
|
作者
Garaev, Moubariz Z.
Luca, Florian [1 ]
Shparlinski, Igor E.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
关键词
D O I
10.1007/s00209-006-0939-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fixed integers >= 1, we estimate exponential sums with harmonic sums H-s(n)= Sigma(n)(i=1) 1/i(s) individually and on average, where Hs(n) is computed modulo a prime p. These bounds are used to derive new results about various congruences modulo p involving H, (n). For example, our estimates imply that for any epsilon > 0, the set {H-s (n) : n < p(1/2+epsilon)} is uniformly distributed modulo a sufficiently large p. We also show that every residue class; can be represented as H-s(n(1))+ (. . .) + H-s(n(7)) equivalent to lambda (mod p) with max {n(v) vertical bar v = 1, . . . , 7} <= p(11/12+epsilon), and we obtain an asymptotic formula for the number of such representations. The same results hold also for the values Bp-r(n) of Bernoulli polynomials where r is fixed, complementing some results of W. L. Fouche.
引用
收藏
页码:855 / 865
页数:11
相关论文
共 50 条
  • [1] Distribution of harmonic sums and Bernoulli polynomials modulo a prime
    Moubariz Z. Garaev
    Florian Luca
    Igor E. Shparlinski
    [J]. Mathematische Zeitschrift, 2006, 253 : 855 - 865
  • [2] Distribution of alternative power sums and Euler polynomials modulo a prime
    Li, Yan
    Kim, Min-Soo
    Hu, Su
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (1-2): : 19 - 25
  • [3] On the Distribution of the Sums of Binomial Coefficients Modulo a Prime
    Henri Faure
    [J]. Monatshefte für Mathematik, 2000, 131 : 263 - 277
  • [4] On the distribution of the sums of binomial coefficients modulo a prime
    Faure, H
    [J]. MONATSHEFTE FUR MATHEMATIK, 2000, 131 (04): : 263 - 277
  • [5] DISTRIBUTION OF TWISTED KLOOSTERMAN SUMS MODULO PRIME POWERS
    Kelmer, Dubi
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (02) : 271 - 280
  • [6] Subset sums modulo a prime
    Nguyen, Hoi H.
    Szemeredi, Endre
    Vu, Van H.
    [J]. ACTA ARITHMETICA, 2008, 131 (04) : 303 - 316
  • [7] SUMS OF SUBSEQUENCES MODULO PRIME POWERS
    ALON, N
    [J]. DISCRETE MATHEMATICS, 1988, 71 (01) : 87 - 88
  • [8] Double and triple sums modulo a prime
    Gyarmati, Katalin
    Konyagin, Sergei
    Ruzsa, Imre Z.
    [J]. ADDITIVE COMBINATORICS, 2007, 43 : 271 - 277
  • [9] On short Kloosterman sums modulo a prime
    Korolev, M. A.
    [J]. MATHEMATICAL NOTES, 2016, 100 (5-6) : 820 - 827
  • [10] Exponential sums modulo prime powers
    Cochrane, T
    [J]. ACTA ARITHMETICA, 2002, 101 (02) : 131 - 149