RECOVERING ZEROS OF POLYNOMIALS MODULO A PRIME

被引:0
|
作者
Gomez, Domingo [1 ]
Gutierrez, Jaime [2 ]
机构
[1] Univ Cantabria, Fac Sci, E-39071 Santander, Spain
[2] Univ Cantabria, ETS Ind Engn & Telecommun, E-39071 Santander, Spain
关键词
FINDING SMALL ROOTS; LATTICE REDUCTION; NUMBER GENERATORS; EQUATIONS; ATTACKING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime and F-p the finite field with p elements. We show how, when given an irreducible bivariate polynomial F is an element of F-p[X, Y] and an approximation to a zero, one can recover the root efficiently, if the approximation is good enough. The strategy can be generalized to polynomials in the variables X-1,..., X-m over the field F-p. These results have been motivated by the predictability problem for nonlinear pseudorandom number generators and other potential applications to cryptography.
引用
收藏
页码:2953 / 2965
页数:13
相关论文
共 50 条
  • [1] Factoring Hecke polynomials modulo a prime
    Conrey, JB
    Farmer, DW
    Wallace, PJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (01) : 123 - 130
  • [2] POLYNOMIALS REDUCIBLE MODULO EVERY PRIME
    CHILDS, L
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (05): : 390 - 391
  • [3] Reducibility type of polynomials modulo a prime
    Harrington, Joshua
    Jones, Lenny
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [4] ON POLYNOMIALS REDUCIBLE MODULO EVERY PRIME IDEAL
    CHATLAND, H
    MANN, HB
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06): : 458 - 458
  • [5] RELATION OF ZEROS TO PERIODS IN FIBONACCI SEQUENCE MODULO PRIME
    ALFRED, U
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (08): : 897 - &
  • [6] Root sets of polynomials modulo prime powers
    Maulik, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 93 (01) : 125 - 140
  • [7] ON THE FACTORIZATIONS OF CUBIC POLYNOMIALS WITH THE SAME DISCRIMINANT MODULO A PRIME
    Klaska, Jiri
    Skula, Ladislav
    [J]. MATHEMATICA SLOVACA, 2018, 68 (05) : 987 - 1000
  • [8] Distribution of harmonic sums and Bernoulli polynomials modulo a prime
    Garaev, Moubariz Z.
    Luca, Florian
    Shparlinski, Igor E.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 855 - 865
  • [9] Distribution of harmonic sums and Bernoulli polynomials modulo a prime
    Moubariz Z. Garaev
    Florian Luca
    Igor E. Shparlinski
    [J]. Mathematische Zeitschrift, 2006, 253 : 855 - 865
  • [10] PRIME POWERS OF ZEROS OF MONIC POLYNOMIALS WITH INTEGER COEFFICIENTS
    TEE, GJ
    [J]. FIBONACCI QUARTERLY, 1994, 32 (03): : 277 - 283