Better approximation algorithms for influence maximization in online social networks

被引:0
|
作者
Yuqing Zhu
Weili Wu
Yuanjun Bi
Lidong Wu
Yiwei Jiang
Wen Xu
机构
[1] University of Texas at Dallas,Department of Computer Science
[2] Zhejiang Sci-Tech University,Department of Mathematics
来源
关键词
Influence maximization; Semidefinite programming; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Influence maximization is a classic and hot topic in social networks. In this paper, firstly we argue that in online social networks, due to the time sensitivity of popular topics, the assumption in IC or LT model that the influence propagates endlessly in the network, is not applicable. Based on this we consider influence transitivity and limited propagation distance in our new model. Secondly, under our model we propose Semidefinite based algorithms. While most existing algorithms rely on monotony and submodularity to obtain approximation ratio of 1−1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document}, when no size limitation exists on the number of seeds, our algorithm achieves approximation ratio with 0.857\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.857$$\end{document}, which is a great improvement. Moreover, when only a limited number of nodes can be chosen as seeds, based on computer-assisted proof, we claim our algorithm still keeps approximation ratio higher than 1−1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} if the ratio of the seeds to the total number of nodes resides in a certain range. At last, we evaluate the effectiveness of our algorithms through extensive experiments on real world social networks.
引用
收藏
页码:97 / 108
页数:11
相关论文
共 50 条
  • [41] A survey on meta-heuristic algorithms for the influence maximization problem in the social networks
    Zahra Aghaee
    Mohammad Mahdi Ghasemi
    Hamid Ahmadi Beni
    Asgarali Bouyer
    Afsaneh Fatemi
    [J]. Computing, 2021, 103 : 2437 - 2477
  • [42] Multi-attribute based influence maximization in social networks: Algorithms and analysis
    Ni, Qiufen
    Guo, Jianxiong
    Du, Hongmin W.
    Wang, Huan
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 921 : 50 - 62
  • [43] A survey on meta-heuristic algorithms for the influence maximization problem in the social networks
    Aghaee, Zahra
    Ghasemi, Mohammad Mahdi
    Beni, Hamid Ahmadi
    Bouyer, Asgarali
    Fatemi, Afsaneh
    [J]. COMPUTING, 2021, 103 (11) : 2437 - 2477
  • [44] Credit Distribution and Influence Maximization in Online Social Networks Using Node Features
    Deng, Xiaoheng
    Pan, Yan
    Wu, You
    Gui, Jingsong
    [J]. 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2015, : 2093 - 2100
  • [45] Topic based time-sensitive influence maximization in online social networks
    Min, Huiyu
    Cao, Jiuxin
    Yuan, Tangfei
    Liu, Bo
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (03): : 1831 - 1859
  • [46] Topic based time-sensitive influence maximization in online social networks
    Huiyu Min
    Jiuxin Cao
    Tangfei Yuan
    Bo Liu
    [J]. World Wide Web, 2020, 23 : 1831 - 1859
  • [47] Continuous Activity Maximization in Online Social Networks
    Guo, Jianxiong
    Chen, Tiantian
    Wu, Weili
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04): : 2775 - 2786
  • [48] Misinformation blocking maximization in online social networks
    Yu, Lei
    Wang, Xiaohang
    Yu, Heng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (23) : 62853 - 62874
  • [49] Social Influence Maximization in Hypergraph in Social Networks
    Zhu, Jianming
    Zhu, Junlei
    Ghosh, Smita
    Wu, Weili
    Yuan, Jing
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (04): : 801 - 811
  • [50] Approximation algorithms for throughput maximization in wireless networks with delay constraints
    Pei, Guanhong
    Kumar, V. S. Anil
    Parthasarathy, Srinivasan
    Srinivasan, Aravind
    [J]. 2011 PROCEEDINGS IEEE INFOCOM, 2011, : 1116 - 1124