Better approximation algorithms for influence maximization in online social networks

被引:0
|
作者
Yuqing Zhu
Weili Wu
Yuanjun Bi
Lidong Wu
Yiwei Jiang
Wen Xu
机构
[1] University of Texas at Dallas,Department of Computer Science
[2] Zhejiang Sci-Tech University,Department of Mathematics
来源
关键词
Influence maximization; Semidefinite programming; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Influence maximization is a classic and hot topic in social networks. In this paper, firstly we argue that in online social networks, due to the time sensitivity of popular topics, the assumption in IC or LT model that the influence propagates endlessly in the network, is not applicable. Based on this we consider influence transitivity and limited propagation distance in our new model. Secondly, under our model we propose Semidefinite based algorithms. While most existing algorithms rely on monotony and submodularity to obtain approximation ratio of 1−1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document}, when no size limitation exists on the number of seeds, our algorithm achieves approximation ratio with 0.857\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.857$$\end{document}, which is a great improvement. Moreover, when only a limited number of nodes can be chosen as seeds, based on computer-assisted proof, we claim our algorithm still keeps approximation ratio higher than 1−1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} if the ratio of the seeds to the total number of nodes resides in a certain range. At last, we evaluate the effectiveness of our algorithms through extensive experiments on real world social networks.
引用
收藏
页码:97 / 108
页数:11
相关论文
共 50 条
  • [11] A Fast Approximation for Influence Maximization in Large Social Networks
    Lee, Jong-Ryul
    Chung, Chin-Wan
    [J]. WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 1157 - 1162
  • [12] Efficient Greedy Algorithms for Influence Maximization in Social Networks
    Lv, Jiaguo
    Guo, Jingfeng
    Ren, Huixiao
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2014, 10 (03): : 471 - 482
  • [13] Friend Recommendation in Online Social Networks: Perspective of Social Influence Maximization
    Zheng, Huanyang
    Wu, Jie
    [J]. 2017 26TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN 2017), 2017,
  • [14] Profit Maximization for Viral Marketing in Online Social Networks: Algorithms and Analysis
    Tang, Jing
    Tang, Xueyan
    Yuan, Junsong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (06) : 1095 - 1108
  • [15] Efficient Algorithms for Budgeted Influence Maximization on Massive Social Networks
    Bian, Song
    Guo, Qintian
    Wang, Sibo
    Yu, Jeffrey Xu
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (09): : 1498 - 1510
  • [16] Online Influence Maximization in Non-Stationary Social Networks
    Bao, Yixin
    Wang, Xiaoke
    Wang, Zhi
    Wu, Chuan
    Lau, Francis C. M.
    [J]. 2016 IEEE/ACM 24TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2016,
  • [17] SEIM: Search economics for influence maximization in online social networks
    Tsai, Chun-Wei
    Liu, Shih-Jui
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 93 : 1055 - 1064
  • [18] Hypergraph-Based Influence Maximization in Online Social Networks
    Zhang, Chuangchuang
    Cheng, Wenlin
    Li, Fuliang
    Wang, Xingwei
    [J]. MATHEMATICS, 2024, 12 (17)
  • [19] Online Processing Algorithms for Influence Maximization
    Tang, Jing
    Tang, Xueyan
    Xiao, Xiaokui
    Yuan, Junsong
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 991 - 1005
  • [20] Influence Maximization Based on Backward Reasoning in Online Social Networks
    Zhang, Lin
    Li, Kan
    [J]. MATHEMATICS, 2021, 9 (24)