Better approximation algorithms for influence maximization in online social networks

被引:0
|
作者
Yuqing Zhu
Weili Wu
Yuanjun Bi
Lidong Wu
Yiwei Jiang
Wen Xu
机构
[1] University of Texas at Dallas,Department of Computer Science
[2] Zhejiang Sci-Tech University,Department of Mathematics
来源
关键词
Influence maximization; Semidefinite programming; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Influence maximization is a classic and hot topic in social networks. In this paper, firstly we argue that in online social networks, due to the time sensitivity of popular topics, the assumption in IC or LT model that the influence propagates endlessly in the network, is not applicable. Based on this we consider influence transitivity and limited propagation distance in our new model. Secondly, under our model we propose Semidefinite based algorithms. While most existing algorithms rely on monotony and submodularity to obtain approximation ratio of 1−1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document}, when no size limitation exists on the number of seeds, our algorithm achieves approximation ratio with 0.857\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.857$$\end{document}, which is a great improvement. Moreover, when only a limited number of nodes can be chosen as seeds, based on computer-assisted proof, we claim our algorithm still keeps approximation ratio higher than 1−1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} if the ratio of the seeds to the total number of nodes resides in a certain range. At last, we evaluate the effectiveness of our algorithms through extensive experiments on real world social networks.
引用
收藏
页码:97 / 108
页数:11
相关论文
共 50 条
  • [21] Cost-efficient Influence Maximization in Online Social Networks
    Zhou, Jingya
    Fan, Jianxi
    Wang, Jin
    Wang, Xi
    Cheng, Baolei
    [J]. 2017 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2017, : 232 - 237
  • [22] Conformity-aware influence maximization in online social networks
    Hui Li
    Sourav S. Bhowmick
    Aixin Sun
    Jiangtao Cui
    [J]. The VLDB Journal, 2015, 24 : 117 - 141
  • [23] Conformity-aware influence maximization in online social networks
    Li, Hui
    Bhowmick, Sourav S.
    Sun, Aixin
    Cui, Jiangtao
    [J]. VLDB JOURNAL, 2015, 24 (01): : 117 - 141
  • [24] Efficient approximation algorithms for adaptive influence maximization
    Huang, Keke
    Tang, Jing
    Han, Kai
    Xiao, Xiaokui
    Chen, Wei
    Sun, Aixin
    Tang, Xueyan
    Lim, Andrew
    [J]. VLDB JOURNAL, 2020, 29 (06): : 1385 - 1406
  • [25] Efficient approximation algorithms for adaptive influence maximization
    Keke Huang
    Jing Tang
    Kai Han
    Xiaokui Xiao
    Wei Chen
    Aixin Sun
    Xueyan Tang
    Andrew Lim
    [J]. The VLDB Journal, 2020, 29 : 1385 - 1406
  • [26] Output-Input Ratio Maximization for Online Social Networks: Algorithms and Analyses
    Chen, Shengminjie
    Yang, Wenguo
    Zhang, Yapu
    Gao, Suixiang
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03): : 958 - 969
  • [27] Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks
    Bucur, Doina
    Iacca, Giovanni
    Marcelli, Andrea
    Squillero, Giovanni
    Tonda, Alberto
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2017, PT I, 2017, 10199 : 221 - 233
  • [28] Credit distribution for influence maximization in online social networks with node features
    Deng, Xiaoheng
    Pan, Yan
    Shen, Hailan
    Gui, Jingsong
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 31 (02) : 979 - 990
  • [29] Influence Maximization under Fairness Budget Distribution in Online Social Networks
    Bich-Ngan T Nguyen
    Phuong N H Pham
    Van-Vang Le
    Snasel, Vaclav
    [J]. MATHEMATICS, 2022, 10 (22)
  • [30] Credit Distribution for Influence Maximization in Online Social Networks with Time Constraint
    Pan, Yan
    Deng, Xiaoheng
    Shen, Hailan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 255 - 260