Polology of Superconformal Blocks

被引:0
|
作者
Kallol Sen
Masahito Yamazaki
机构
[1] University of Tokyo,Kavli IPMU
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We systematically classify all possible poles of superconformal blocks as a function of the scaling dimension of intermediate operators, for all superconformal algebras in dimensions three and higher. This is done by working out the recently-proven irreducibility criterion for parabolic Verma modules for classical basic Lie superalgebras. The result applies to correlators for external operators of arbitrary spin, and indicates presence of infinitely many short multiplets of superconformal algebras, most of which are non-unitary. We find a set of poles whose positions are shifted by linear in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended supersymmetry. We find an interesting subtlety for 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended superconformal algebra with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} odd associated with odd non-isotropic roots. We also comment on further applications to superconformal blocks.
引用
收藏
页码:785 / 821
页数:36
相关论文
共 50 条
  • [41] Superconformal Technicolor
    Azatov, Aleksandr
    Galloway, Jamison
    Luty, Markus A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [42] SUPERCONFORMAL CONFINEMENT
    ZAIKOV, RP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (12): : 1733 - 1735
  • [43] On superconformal anyons
    Nima Doroud
    David Tong
    Carl Turner
    Journal of High Energy Physics, 2016
  • [44] The superconformal particle
    Dilkes, FA
    McKeon, DGC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (05): : 761 - 767
  • [45] Superconformal hypermultiplets
    de Wit, B
    Kleijn, B
    Vandoren, S
    NUCLEAR PHYSICS B, 2000, 568 (03) : 475 - 502
  • [46] The superconformal equation
    Buric, Ilija
    Schomerus, Volker
    Sobko, Evgeny
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (10):
  • [47] SUPERCONFORMAL ANOMALIES
    LUKIERSKI, J
    PHYSICS LETTERS B, 1977, 70 (02) : 183 - 186
  • [48] Conformal blocks related to the R-R states in the (c)over-cap=1 superconformal field theories
    Hadasz, Leszek
    Jaskolski, Zbigniew
    Suchanek, Paulina
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [49] Superconformal mechanics
    Fedoruk, Sergey
    Ivanov, Evgeny
    Lechtenfeld, Olaf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
  • [50] On superconformal anyons
    Doroud, Nima
    Tong, David
    Turner, Carl
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01): : 1 - 41