Polology of Superconformal Blocks

被引:0
|
作者
Kallol Sen
Masahito Yamazaki
机构
[1] University of Tokyo,Kavli IPMU
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We systematically classify all possible poles of superconformal blocks as a function of the scaling dimension of intermediate operators, for all superconformal algebras in dimensions three and higher. This is done by working out the recently-proven irreducibility criterion for parabolic Verma modules for classical basic Lie superalgebras. The result applies to correlators for external operators of arbitrary spin, and indicates presence of infinitely many short multiplets of superconformal algebras, most of which are non-unitary. We find a set of poles whose positions are shifted by linear in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended supersymmetry. We find an interesting subtlety for 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended superconformal algebra with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} odd associated with odd non-isotropic roots. We also comment on further applications to superconformal blocks.
引用
收藏
页码:785 / 821
页数:36
相关论文
共 50 条
  • [21] N=1 superconformal blocks for general scalar operators
    Khandker, Zuhair U.
    Li, Daliang
    Poland, David
    Simmons-Duffin, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [22] 4-Point Superconformal Blocks in N=1 SCFT
    Suchanek, Paulina
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS, 2010, 1243 : 31 - 39
  • [23] POLOLOGY AND STRIPPING ANGULAR CORRELATIONS
    ROBSON, D
    PHYSICS LETTERS, 1964, 9 (01): : 54 - 56
  • [24] APPLICATIONS OF POLOLOGY TO STRIPPING REACTIONS
    DULLEMOND, C
    SCHNITZER, HJ
    PHYSICAL REVIEW, 1963, 129 (02): : 821 - &
  • [25] Superconformal blocks for stress-tensor and chiral operators for 4D N=2 superconformal field theories
    Rakshit, Subhadeep
    Mukhopadhyay, Subir
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (06):
  • [26] N = 1 superconformal blocks with Ramond fields from AGT correspondence
    Alexander Belavin
    Baur Mukhametzhanov
    Journal of High Energy Physics, 2013
  • [27] Elliptic recurrence representation of the N=1 superconformal blocks in the Ramond sector
    Hadasz, Leszek
    Jaskolski, Zbigniew
    Suchanek, Paulina
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11):
  • [28] ANALYSIS NUCLEAR SCATTERING THROUGH POLOLOGY
    SHANTA, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1969, 61 (01): : 69 - &
  • [29] N=1 superconformal blocks with Ramond fields from AGT correspondence
    Belavin, Alexander
    Mukhametzhanov, Baur
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [30] POLOLOGY AND (D,P) REACTIONS
    BERTRAM, WK
    TASSIE, LJ
    PHYSICAL REVIEW, 1968, 166 (04): : 1029 - &