Polology of Superconformal Blocks

被引:0
|
作者
Kallol Sen
Masahito Yamazaki
机构
[1] University of Tokyo,Kavli IPMU
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We systematically classify all possible poles of superconformal blocks as a function of the scaling dimension of intermediate operators, for all superconformal algebras in dimensions three and higher. This is done by working out the recently-proven irreducibility criterion for parabolic Verma modules for classical basic Lie superalgebras. The result applies to correlators for external operators of arbitrary spin, and indicates presence of infinitely many short multiplets of superconformal algebras, most of which are non-unitary. We find a set of poles whose positions are shifted by linear in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended supersymmetry. We find an interesting subtlety for 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended superconformal algebra with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} odd associated with odd non-isotropic roots. We also comment on further applications to superconformal blocks.
引用
下载
收藏
页码:785 / 821
页数:36
相关论文
共 50 条
  • [11] Large-c superconformal torus blocks
    Konstantin Alkalaev
    Vladimir Belavin
    Journal of High Energy Physics, 2018
  • [12] Superconformal blocks from Wilson lines with loop corrections
    Hikida, Yasuaki
    Uetoko, Takahiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [13] N=2 superconformal blocks and instanton partition functions
    Belavin, V.
    Wyllard, Niclas
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [14] Superconformal Blocks in Diverse Dimensions and BC Symmetric Functions
    Francesco Aprile
    Paul Heslop
    Communications in Mathematical Physics, 2023, 402 : 995 - 1101
  • [15] Recurrence relations for toric N=1 superconformal blocks
    Hadasz, Leszek
    Jaskolski, Zbigniew
    Suchanek, Paulina
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [16] Super topological recursion and Gaiotto vectors for superconformal blocks
    Kento Osuga
    Letters in Mathematical Physics, 2022, 112
  • [17] Superconformal Blocks in Diverse Dimensions and BC Symmetric Functions
    Aprile, Francesco
    Heslop, Paul
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (02) : 995 - 1101
  • [18] Super topological recursion and Gaiotto vectors for superconformal blocks
    Osuga, Kento
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (03)
  • [19] Superconformal blocks from Wilson lines with loop corrections
    Yasuaki Hikida
    Takahiro Uetoko
    Journal of High Energy Physics, 2018
  • [20] Recurrence relations for toric N = 1 superconformal blocks
    Leszek Hadasz
    Zbigniew Jaskólski
    Paulina Suchanek
    Journal of High Energy Physics, 2012