Polology of Superconformal Blocks

被引:0
|
作者
Kallol Sen
Masahito Yamazaki
机构
[1] University of Tokyo,Kavli IPMU
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We systematically classify all possible poles of superconformal blocks as a function of the scaling dimension of intermediate operators, for all superconformal algebras in dimensions three and higher. This is done by working out the recently-proven irreducibility criterion for parabolic Verma modules for classical basic Lie superalgebras. The result applies to correlators for external operators of arbitrary spin, and indicates presence of infinitely many short multiplets of superconformal algebras, most of which are non-unitary. We find a set of poles whose positions are shifted by linear in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended supersymmetry. We find an interesting subtlety for 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}-extended superconformal algebra with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} odd associated with odd non-isotropic roots. We also comment on further applications to superconformal blocks.
引用
下载
收藏
页码:785 / 821
页数:36
相关论文
共 50 条
  • [1] Polology of Superconformal Blocks
    Sen, Kallol
    Yamazaki, Masahito
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (02) : 785 - 821
  • [2] Covariant approaches to superconformal blocks
    A. Liam Fitzpatrick
    Jared Kaplan
    Zuhair U. Khandker
    Daliang Li
    David Poland
    David Simmons-Duffin
    Journal of High Energy Physics, 2014
  • [3] Covariant approaches to superconformal blocks
    Fitzpatrick, A. Liam
    Kaplan, Jared
    Khandker, Zuhair U.
    Li, Daliang
    Poland, David
    Simmons-Duffin, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [4] Superconformal blocks: general theory
    Buric, Ilija
    Schomerus, Volker
    Sobko, Evgeny
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
  • [5] Superconformal blocks for SCFTs with eight supercharges
    Bobev, Nikolay
    Lauria, Edoardo
    Mazac, Dalimil
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [6] Superconformal blocks for SCFTs with eight supercharges
    Nikolay Bobev
    Edoardo Lauria
    Dalimil Mazáč
    Journal of High Energy Physics, 2017
  • [7] Revisiting N=4 superconformal blocks
    Bissi, Agnese
    Lukowski, Tomasz
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02): : 1 - 23
  • [8] Large-c superconformal torus blocks
    Alkalaev, Konstantin
    Belavin, Vladimir
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [9] WZW SUPERCONFORMAL BLOCKS FROM 3 DIMENSIONS
    MCARTHUR, IN
    PHYSICS LETTERS B, 1991, 263 (3-4) : 391 - 402
  • [10] N=1 superconformal theories with DN blocks
    Fazzi, Marco
    Giacomelli, Simone
    PHYSICAL REVIEW D, 2017, 95 (08)