On One Construction Method for Hadamard Matrices

被引:0
|
作者
M. Villanueva
V. A. Zinoviev
D. A. Zinoviev
机构
[1] Universitat Autonoma de Barcelona,
[2] Kharkevich Institute for Information Transmission Problems,undefined
[3] Russian Academy of Sciences,undefined
来源
关键词
Hadamard matrix; Hadamard code; generalized concatenated construction; code in the Lee metric; Kronecker product; Sylvester construction; rank of an Hadamard matrix; kernel dimension of an Hadamard matrix; nonequivalent Hadamard matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Using a concatenated construction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-ary codes, we construct codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_q$$\end{document} in the Lee metrics which after a proper mapping to the binary alphabet (which in the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_4$$\end{document} is the well-known Gray map) become binary Hadamard codes (in particular, Hadamard matrices). Our construction allows to increase the rank and the kernel dimension of the resulting Hadamard code. Using computer search, we construct new nonequivalent Hadamard matrices of orders \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$48$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64$$\end{document} with various fixed values of the rank and the kernel dimension in the range of possible values. It was found that in a special case, our construction coincides with the Kronecker (or Sylvester) construction and can be regarded as a version of a presently known [1] modified Sylvester construction which uses one Hadamard matrix of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} (not necessarily distinct) Hadamard matrices of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. We generalize this modified construction by proposing a more general Sylvester-type construction based on two families of (not necessarily distinct) Hadamard matrices, namely, on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} matrices of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} matrices of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. The resulting matrix is of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mk$$\end{document}, as in the construction from [1].
引用
收藏
页码:306 / 328
页数:22
相关论文
共 50 条
  • [41] Construction of mixed-level screening designs using Hadamard matrices
    Hu, Bo
    Wang, Dongying
    Sun, Fasheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 231
  • [42] On Good Matrices and Skew Hadamard Matrices
    Awyzio, Gene
    Seberry, Jennifer
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 13 - 28
  • [43] Hadamard and conference matrices
    Arasu, KT
    Chen, YQ
    Pott, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 103 - 117
  • [44] SEARCH FOR HADAMARD MATRICES
    GOLOMB, SW
    BAUMERT, LD
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (01): : 12 - &
  • [45] HADAMARD MATRICES AND THEIR APPLICATIONS
    HEDAYAT, A
    WALLIS, WD
    ANNALS OF STATISTICS, 1978, 6 (06): : 1184 - 1238
  • [46] Spectra of Hadamard matrices
    Egan, Ronan
    Cathain, Padraig O.
    Swartz, Eric
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 501 - 512
  • [47] EQUIVALENCE OF HADAMARD MATRICES
    WALLIS, WD
    WALLIS, J
    ISRAEL JOURNAL OF MATHEMATICS, 1969, 7 (02) : 122 - &
  • [48] Power Hadamard matrices
    Craigen, R.
    Woodford, R.
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2868 - 2884
  • [49] ON HADAMARD PRODUCT OF MATRICES
    DJOKOVIC, DZ
    MATHEMATISCHE ZEITSCHRIFT, 1965, 86 (05) : 395 - &
  • [50] Hadamard and Conference Matrices
    K.T. Arasu
    Yu Qing Chen
    Alexander Pott
    Journal of Algebraic Combinatorics, 2001, 14 : 103 - 117