On One Construction Method for Hadamard Matrices

被引:0
|
作者
M. Villanueva
V. A. Zinoviev
D. A. Zinoviev
机构
[1] Universitat Autonoma de Barcelona,
[2] Kharkevich Institute for Information Transmission Problems,undefined
[3] Russian Academy of Sciences,undefined
来源
关键词
Hadamard matrix; Hadamard code; generalized concatenated construction; code in the Lee metric; Kronecker product; Sylvester construction; rank of an Hadamard matrix; kernel dimension of an Hadamard matrix; nonequivalent Hadamard matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Using a concatenated construction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-ary codes, we construct codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_q$$\end{document} in the Lee metrics which after a proper mapping to the binary alphabet (which in the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_4$$\end{document} is the well-known Gray map) become binary Hadamard codes (in particular, Hadamard matrices). Our construction allows to increase the rank and the kernel dimension of the resulting Hadamard code. Using computer search, we construct new nonequivalent Hadamard matrices of orders \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$48$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64$$\end{document} with various fixed values of the rank and the kernel dimension in the range of possible values. It was found that in a special case, our construction coincides with the Kronecker (or Sylvester) construction and can be regarded as a version of a presently known [1] modified Sylvester construction which uses one Hadamard matrix of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} (not necessarily distinct) Hadamard matrices of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. We generalize this modified construction by proposing a more general Sylvester-type construction based on two families of (not necessarily distinct) Hadamard matrices, namely, on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} matrices of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} matrices of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. The resulting matrix is of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mk$$\end{document}, as in the construction from [1].
引用
收藏
页码:306 / 328
页数:22
相关论文
共 50 条
  • [21] GENERALIZED delta -CODES AND CONSTRUCTION OF HADAMARD MATRICES.
    Agayan, S.S.
    Sarukhanyan, A.G.
    Problems of information transmission, 1980, 16 (03) : 203 - 211
  • [22] HADAMARD-MATRICES AND A PROBLEM IN THE THEORY OF CODE CONSTRUCTION
    BOSE, RC
    SHRIKHANDE, SS
    ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (02): : 619 - 619
  • [23] NEW HADAMARD-MATRICES AND CONFERENCE MATRICES OBTAINED VIA MATHONS CONSTRUCTION
    SEBERRY, J
    WHITEMAN, AL
    GRAPHS AND COMBINATORICS, 1988, 4 (04) : 355 - 377
  • [24] On Generalizing the Method of Scarpis to Complex Hadamard Matrices
    Sargent M.
    Lee K.
    Rushall J.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 119 : 105 - 111
  • [25] Construction of optimal supersaturated designs via generalized Hadamard matrices
    Li, Min
    Liu, Min-Qian
    Sun, Fasheng
    Zhang, Dong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (08) : 2565 - 2579
  • [26] Construction of new skew Hadamard matrices and their use in screening experiments
    Georgiou, S
    Koukouvinos, C
    Stylianou, S
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) : 423 - 429
  • [27] Construction of Inertial Manifolds by the Hadamard Method
    刘青民
    东北数学, 1995, (01) : 19 - 30
  • [28] Jacket matrices constructed from Hadamard matrices and generalized Hadamard matrices
    Finlayson, Ken
    Lee, Moon Ho
    Seberry, Jennifer
    Yamada, Mieko
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 83 - 87
  • [29] Genetic algorithms for the construction of Hadamard matrices with two circulant cores
    Kotsireas, Ilias S.
    Koukouvinos, Christos
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2005, 8 (02): : 241 - 250
  • [30] Construction of involution Cauchy-Hadamard type MDS matrices
    Cui T.
    Jin C.-H.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2010, 32 (02): : 500 - 503