Spectra of Hadamard matrices

被引:0
|
作者
Egan, Ronan [1 ]
Cathain, Padraig O. [2 ]
Swartz, Eric [3 ]
机构
[1] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a technique for controlling the spectra of Hadamard matrices with sufficiently rich automorphism groups. For each integer t >= 2, we construct a Hadamard matrix H-t equivalent to the Sylvester matrix of order n(t) = 2(2t-1-1) such that the minimal polynomial of 1/root nt H-t is the cyclotomic polynomial Phi(2t+1)(x). As an application we construct real Hadamard matrices from Butson Hadamard matrices. More concretely, a Butson Hadamard matrix H has entries in the kth roots of unity and satisfies the matrix equation HH* = nI(n). We write BH(n, k) for the set of such matrices. A complete morphism of Butson matrices is a map BH(n, k) -> BH(m, l). The matrices H-t yield new examples of complete morphisms BH(n, 2(t)) -> BH(2(2t-1-1)n, 2), for each t >= 2, generalising a well-known result of Turyn.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 50 条
  • [1] Jacket matrices constructed from Hadamard matrices and generalized Hadamard matrices
    Finlayson, Ken
    Lee, Moon Ho
    Seberry, Jennifer
    Yamada, Mieko
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 83 - 87
  • [2] HADAMARD MATRICES
    WALLIS, JS
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (02) : 149 - 164
  • [3] HADAMARD MATRICES
    BRENNER, JL
    COOKE, KL
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 331 - 331
  • [4] Construction of New Hadamard Matrices Using Known Hadamard Matrices
    Farouk, Adda
    Wang, Qing-Wen
    [J]. FILOMAT, 2022, 36 (06) : 2025 - 2042
  • [5] Hadamard Matrices Modulo p and Small Modular Hadamard Matrices
    Kuperberg, Vivian
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (09) : 393 - 405
  • [6] Generalized Hadamard Matrices Whose Transposes Are Not Generalized Hadamard Matrices
    Craigen, R.
    de Launey, W.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (06) : 456 - 458
  • [7] On Good Matrices and Skew Hadamard Matrices
    Awyzio, Gene
    Seberry, Jennifer
    [J]. ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 13 - 28
  • [8] Hadamard and conference matrices
    Arasu, KT
    Chen, YQ
    Pott, A
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 103 - 117
  • [9] HADAMARD MATRICES AND THEIR APPLICATIONS
    HEDAYAT, A
    WALLIS, WD
    [J]. ANNALS OF STATISTICS, 1978, 6 (06): : 1184 - 1238
  • [10] SEARCH FOR HADAMARD MATRICES
    GOLOMB, SW
    BAUMERT, LD
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (01): : 12 - &