Outer independent signed double Roman domination

被引:0
|
作者
H. Abdollahzadeh Ahangar
F. Nahani Pour
M. Chellali
S. M. Sheikholeslami
机构
[1] Babol Noshirvani University of Technology,Department of Mathematics
[2] Azarbaijan Shahid Madani University,Department of Mathematics
[3] University of Blida,LAMDA
关键词
Double Roman dominating function; Signed double Roman domination number; Outer independent signed double Roman dominating function; Outer independent signed double Roman domination number; 05C69; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose [3]={0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[3]=\{0,1,2,3\}$$\end{document} and [3-]={-1,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[3^{-}]=\{-1,1,2,3\}$$\end{document}. An outer independent signed double Roman dominating function (OISDRDF) of a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is function l:V(Γ)→[3-]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l:V({\Gamma })\rightarrow [3^{-}]$$\end{document} for which (i) each vertex t with l(t)=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(t)=-1$$\end{document} is joined to at least two vertices labeled a 2 or to at least one vertex z with l(z)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(z)=3$$\end{document}, (ii) each vertex t with l(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(t)=1$$\end{document} is joined to at least a vertex z with l(z)≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(z)\ge 2,$$\end{document} (iii) l(N[t])=∑w∈N[t]l(w)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(N[t])=\sum _{w\in N[t]}l(w)\ge 1$$\end{document} occurs for each vertex t, (iv) the set of vertices labeled -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} under l is an independent set. The weight of an OISDRDF is the sum of its function values over all vertices, and the outer independent signed double Roman domination number (OISDRD-number) γsdRoi(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sdR}^{oi}(\Gamma )$$\end{document} is the minimum weight of an OISDRDF on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. We first show that determining the number γsdRoi(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sdR}^{oi}(\Gamma )$$\end{document} is NP-complete for bipartite and chordal graphs. Then we provide exact values of this parameter for paths and cycles. Moreover, we show that for trees T of order n≥3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3,$$\end{document}γsdRoi(Γ)≤n-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sdR}^{oi}(\Gamma )\le n-1,$$\end{document} and we characterize extremal trees attaining this bound.
引用
收藏
页码:705 / 720
页数:15
相关论文
共 50 条
  • [21] On the Independent Double Roman Domination in Graphs
    Doost Ali Mojdeh
    Zhila Mansouri
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 905 - 915
  • [22] Independent Double Roman Domination in Graphs
    Hamidreza Maimani
    Mostafa Momeni
    Sakineh Nazari Moghaddam
    Farhad Rahimi Mahid
    Seyed Mahmoud Sheikholeslami
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 543 - 555
  • [23] On the Independent Double Roman Domination in Graphs
    Mojdeh, Doost Ali
    Mansouri, Zhila
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 905 - 915
  • [24] Independent Double Roman Domination in Graphs
    Maimani, Hamidreza
    Momeni, Mostafa
    Moghaddam, Sakineh Nazari
    Mahid, Farhad Rahimi
    Sheikholeslami, Seyed Mahmoud
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 543 - 555
  • [25] Independent double Roman domination in graphs
    Maimani, H. R.
    Momeni, M.
    Mahid, F. Rahimi
    Sheikholeslami, S. M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 905 - 910
  • [26] Outer-independent total Roman domination in graphs
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 107 - 119
  • [27] Algorithmic aspects of outer independent Roman domination in graphs
    Sharma, Amit
    Kumar, Jakkepalli Pavan
    Subba Reddy, P. Venkata
    Arumugam, S.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [28] Twin signed double Roman domination numbers in directed graphs
    Mahmoodi, Akram
    Atapour, Maryam
    Aliyar, Sattar
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [29] BOUNDS FOR SIGNED DOUBLE ROMAN k-DOMINATION IN TREES
    Yang, Hong
    Wu, Pu
    Nazari-Moghaddam, Sakineh
    Sheikholeslami, Seyed Mahmoud
    Zhang, Xiaosong
    Shao, Zehui
    Tang, Yuan Yan
    [J]. RAIRO-OPERATIONS RESEARCH, 2019, 53 (02) : 627 - 643
  • [30] Signed total double Roman k-domination in graphs
    Shahbazi, L.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)