Independent Double Roman Domination in Graphs

被引:0
|
作者
Hamidreza Maimani
Mostafa Momeni
Sakineh Nazari Moghaddam
Farhad Rahimi Mahid
Seyed Mahmoud Sheikholeslami
机构
[1] Shahid Rajaee Teacher Training University,Department of Basic Sciences
[2] Azarbaijan Shahid Madani University,Department of Mathematics
关键词
Independent double Roman domination; Independent Roman domination; NP-complete; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a double Roman dominating function (DRDF) on G is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : V \rightarrow \{0, 1, 2, 3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v) = 0$$\end{document}, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then vertex v has at least one neighbor w with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. A DRDF f is called an independent double Roman dominating function (IDRDF) if the set of vertices with positive weight is independent. The weight of an IDRDF is the sum f(V)=∑v∈Vf(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f (V) =\sum _{v\in V} f (v)$$\end{document}. The independent double Roman domination number idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is the minimum weight of an IDRDF on G. In this paper, we initiate the study of independent double Roman domination. We first show that the decision problem associated with idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is NP-complete for bipartite graphs and then we present some sharp bounds on the independent double Roman domination number.
引用
收藏
页码:543 / 555
页数:12
相关论文
共 50 条
  • [1] On the Independent Double Roman Domination in Graphs
    Doost Ali Mojdeh
    Zhila Mansouri
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 905 - 915
  • [2] Independent Double Roman Domination in Graphs
    Maimani, Hamidreza
    Momeni, Mostafa
    Moghaddam, Sakineh Nazari
    Mahid, Farhad Rahimi
    Sheikholeslami, Seyed Mahmoud
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 543 - 555
  • [3] Independent double Roman domination in graphs
    Maimani, H. R.
    Momeni, M.
    Mahid, F. Rahimi
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 905 - 910
  • [4] On the Independent Double Roman Domination in Graphs
    Mojdeh, Doost Ali
    Mansouri, Zhila
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 905 - 915
  • [5] On the Outer Independent Total Double Roman Domination in Graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [6] On the Outer-Independent Double Roman Domination of Graphs
    Rao, Yongsheng
    Kosari, Saeed
    Sheikholeslami, Seyed Mahmoud
    Chellali, M.
    Kheibari, Mahla
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 6
  • [7] On the Outer Independent Total Double Roman Domination in Graphs
    H. Abdollahzadeh Ahangar
    M. Chellali
    S. M. Sheikholeslami
    J. C. Valenzuela-Tripodoro
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] On the double Roman domination of graphs
    Yue, Jun
    Wei, Meiqin
    Li, Min
    Liu, Guodong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 669 - 675
  • [9] On the double Roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 1 - 7
  • [10] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086