Outer independent signed double Roman domination

被引:0
|
作者
H. Abdollahzadeh Ahangar
F. Nahani Pour
M. Chellali
S. M. Sheikholeslami
机构
[1] Babol Noshirvani University of Technology,Department of Mathematics
[2] Azarbaijan Shahid Madani University,Department of Mathematics
[3] University of Blida,LAMDA
关键词
Double Roman dominating function; Signed double Roman domination number; Outer independent signed double Roman dominating function; Outer independent signed double Roman domination number; 05C69; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose [3]={0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[3]=\{0,1,2,3\}$$\end{document} and [3-]={-1,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[3^{-}]=\{-1,1,2,3\}$$\end{document}. An outer independent signed double Roman dominating function (OISDRDF) of a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is function l:V(Γ)→[3-]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l:V({\Gamma })\rightarrow [3^{-}]$$\end{document} for which (i) each vertex t with l(t)=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(t)=-1$$\end{document} is joined to at least two vertices labeled a 2 or to at least one vertex z with l(z)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(z)=3$$\end{document}, (ii) each vertex t with l(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(t)=1$$\end{document} is joined to at least a vertex z with l(z)≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(z)\ge 2,$$\end{document} (iii) l(N[t])=∑w∈N[t]l(w)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(N[t])=\sum _{w\in N[t]}l(w)\ge 1$$\end{document} occurs for each vertex t, (iv) the set of vertices labeled -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} under l is an independent set. The weight of an OISDRDF is the sum of its function values over all vertices, and the outer independent signed double Roman domination number (OISDRD-number) γsdRoi(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sdR}^{oi}(\Gamma )$$\end{document} is the minimum weight of an OISDRDF on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. We first show that determining the number γsdRoi(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sdR}^{oi}(\Gamma )$$\end{document} is NP-complete for bipartite and chordal graphs. Then we provide exact values of this parameter for paths and cycles. Moreover, we show that for trees T of order n≥3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3,$$\end{document}γsdRoi(Γ)≤n-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sdR}^{oi}(\Gamma )\le n-1,$$\end{document} and we characterize extremal trees attaining this bound.
引用
收藏
页码:705 / 720
页数:15
相关论文
共 50 条
  • [11] Signed double Roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 257 : 1 - 11
  • [12] Algorithmic Aspects of Outer-Independent Double Roman Domination in Graphs
    Sharma, Amit
    Reddy, P. Venkata Subba
    Arumugam, S.
    Kumar, Jakkepalli Pavan
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024,
  • [13] Signed double Roman domination numbers in digraphs
    Amjadi, Jafar
    Pourhosseini, Fatemeh
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 194 - 205
  • [14] Signed double Roman domination on cubic graphs
    Iurlano, Enrico
    Zec, Tatjana
    Djukanovic, Marko
    Raidl, Guenther R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 471
  • [15] Bounds on signed total double Roman domination
    Shahbazi, L.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (02) : 191 - 206
  • [16] New bounds on the outer-independent total double Roman domination number
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [17] Outer independent Roman domination number of trees
    Dehgardi, Nasrin
    Chellali, Mustapha
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 273 - 286
  • [18] On the Outer-Independent Roman Domination in Graphs
    Martinez, Abel Cabrera
    Garcia, Suitberto Cabrera
    Carrion Garcia, Andres
    Grisales del Rio, Angela Maria
    [J]. SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [19] SIGNED TOTAL DOUBLE ROMAN DOMINATION NUMBERS IN DIGRAPHS
    Amjadi, J.
    Hosseini, F. Pour
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 357 - 366
  • [20] Signed double Roman k-domination in graphs
    Amjadi, J.
    Yang, Hong
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    Shao, Zehui
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 82 - 105