New bounds on the outer-independent total double Roman domination number

被引:0
|
作者
Sheikholeslami, S. M. [1 ]
Volkmann, L. [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhlfur Math 2, D-52056 Aachen, Germany
关键词
(Total) double Roman domination; outer-independent (total) double Roman domination;
D O I
10.1142/S179383092350043X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A double Roman dominating function (DRDF) on a graph G = (V,E) is a function f : V ->{0, 1, 2, 3} satisfying (i) if f(v) = 0 then there must be at least two neighbors assigned two under f or one neighbor w with f(w) = 3; and (ii) if f(v) = 1 then v must be adjacent to a vertex w such that f(w) =2. A DRDF is an outer-independent total double Roman dominating function (OITDRDF) on G if the set of vertices labeled 0 induces an edgeless subgraph and the subgraph induced by the vertices with a non-zero label has no isolated vertices. The weight of an OITDRDF is the sum of its function values over all vertices, and the outer-independent total Roman domination number ?(oi)(tdR)(G) is the minimum weight of an OITDRDF on G. In this paper, we establish various bounds on ?(oi)(tdR)(G). In particular, we present Nordhaus-Gaddum-type inequalities for this parameter. Some of our results improve the previous results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Bounds on the outer-independent double Italian domination number
    Azvin, Farzaneh
    Rad, Nader Jafari
    Volkmann, Lutz
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 123 - 136
  • [2] Bounds on the outer-independent Roman domination number of unicyclic and bicyclic graphs
    Rad, Nader jafari
    Khodkar, Abdollah
    Kamarulhaili, Hailiza
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 88 : 385 - 397
  • [3] Outer-independent total Roman domination in graphs
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 107 - 119
  • [4] On the Outer-Independent Double Roman Domination of Graphs
    Rao, Yongsheng
    Kosari, Saeed
    Sheikholeslami, Seyed Mahmoud
    Chellali, M.
    Kheibari, Mahla
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 6
  • [5] On the outer-independent double Italian domination number
    Abd Aziz, Noor A'lawiah
    Kamarulhaili, Hailiza
    Azvin, Farzaneh
    Rad, Nader Jafari
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 365 - 374
  • [6] Double outer-independent domination number of graphs
    Martinez, Abel Cabrera
    QUAESTIONES MATHEMATICAE, 2021, 44 (12) : 1835 - 1850
  • [7] REMARKS ON THE OUTER-INDEPENDENT DOUBLE ITALIAN DOMINATION NUMBER
    Volkmann, Lutz
    OPUSCULA MATHEMATICA, 2021, 41 (02) : 259 - 268
  • [8] Algorithmic Aspects of Outer-Independent Total Roman Domination in Graphs
    Sharma, Amit
    Reddy, P. Venkata Subba
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2021, 32 (03) : 331 - 339
  • [9] On the Outer-Independent Roman Domination in Graphs
    Martinez, Abel Cabrera
    Garcia, Suitberto Cabrera
    Carrion Garcia, Andres
    Grisales del Rio, Angela Maria
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [10] Relating the Outer-Independent Total Roman Domination Number with Some Classical Parameters of Graphs
    Abel Cabrera Martínez
    Dorota Kuziak
    Ismael G. Yero
    Mediterranean Journal of Mathematics, 2022, 19