Synchronisation of fractional-order complex systems and its application

被引:0
|
作者
Milad Mohadeszadeh
Ali Karimpour
Naser Pariz
机构
[1] Ferdowsi University of Mashhad (FUM) Campus,Department of Electrical Engineering, Faculty of Engineering
来源
Pramana | 2019年 / 92卷
关键词
Fractional-order chaotic system; complex projective synchronisation; parameter modulation; chaotic secure communication; 02.30.Yy; 05.45.–a; 05.45.Gg; 05.45.Vx;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a passive control scheme based on the fractional-order calculus is proposed. We study the modified complex projective synchronisation between two identical fractional-order complex chaotic systems, and its application in the secure communication. The fractional-order complex chaotic Lorenz system is employed to encrypt the emitted signal. In the transmitter module, the information signal is modulated into one parameter of the Lorenz system. It is assumed that the same parameter is unknown in the receiver module. In order to synchronise two systems with different initial conditions, the controllers and an appropriate parameter update rule are designed. Theoretical analysis and numerical simulations show that this method is feasible and robust to some extent in the presence of channel noise.
引用
收藏
相关论文
共 50 条
  • [1] Synchronisation of fractional-order complex systems and its application
    Mohadeszadeh, Milad
    Karimpour, Ali
    Pariz, Naser
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (02):
  • [2] Adaptive synchronisation of fractional-order chaotic systems
    张若洵
    杨世平
    [J]. Chinese Physics B, 2010, 19 (02) : 161 - 167
  • [3] Adaptive synchronisation of fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    [J]. CHINESE PHYSICS B, 2010, 19 (02)
  • [4] Exponential synchronization of fractional-order complex chaotic systems and its application
    Yadav, Vijay K.
    Shukla, Vijay K.
    Das, Subir
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 147
  • [5] Impulsive synchronisation of a class of fractional-order hyperchaotic systems
    Wang Xing-Yuan
    Zhang Yong-Lei
    Lin Da
    Zhang Na
    [J]. CHINESE PHYSICS B, 2011, 20 (03)
  • [6] Impulsive synchronisation of a class of fractional-order hyperchaotic systems
    王兴元
    张永雷
    林达
    张娜
    [J]. Chinese Physics B, 2011, 20 (03) : 92 - 98
  • [7] High gain observer design for fractional-order non-linear systems with delayed measurements: application to synchronisation of fractional-order chaotic systems
    Bettayeb, Maamar
    Al-Saggaf, Ubaid M.
    Djennoune, Said
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (17): : 3171 - 3178
  • [8] Reduced-order fractional integral observer for synchronisation and anti-synchronisation of fractional-order chaotic systems
    Melendez-Vazquez, Fidel
    Martinez-Guerra, Rafael
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1755 - 1762
  • [9] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Neetu Aneja
    P Tripathi
    Binay Kumar Sharma
    [J]. Pramana, 2020, 94
  • [10] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Aneja, Neetu
    Tripathi, P.
    Sharma, Binay Kumar
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):