Laplacian Controllability for Graphs with Integral Laplacian Spectrum

被引:0
|
作者
Zoran Stanić
机构
[1] University of Belgrade,Faculty of Mathematics
来源
关键词
Laplacian eigenvalues; Controllability; Integral Laplacian spectrum; Cograph; Threshold graph; 05C50; 93B05; 93C05;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a graph with n vertices, LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document} is its Laplacian matrix, and b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document} is a binary vector of length n, then the pair (LG,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_G, \mathbf {b})$$\end{document} is said to be controllable, and we also say that G is Laplacian controllable for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document}, if b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document} is non-orthogonal to any of the eigenvectors of LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document}. It is known that if G is Laplacian controllable, then it has no repeated Laplacian eigenvalues. If G has no repeated Laplacian eigenvalues and each of them is an integer, then G is decomposable into a (dominate) induced subgraph, say H, and another induced subgraph with at most three vertices. We express the Laplacian controllability of G in terms of that of H. In this way, we address the question on the Laplacian controllability of cographs and, in particular, threshold graphs.
引用
收藏
相关论文
共 50 条
  • [1] Laplacian Controllability for Graphs with Integral Laplacian Spectrum
    Stanic, Zoran
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [2] On the Conjecture for Certain Laplacian Integral Spectrum of Graphs
    Das, Kinkar Ch.
    Lee, Sang-Gu
    Cheon, Gi-Sang
    JOURNAL OF GRAPH THEORY, 2010, 63 (02) : 106 - 113
  • [3] Signed graphs with integral net Laplacian spectrum
    Andelic, M.
    Koledin, T.
    Stanic, Z.
    Wang, J.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (02) : 177 - 184
  • [4] Laplacian Controllability of Interconnected Graphs
    Hsu, Shun-Pin
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (02): : 797 - 806
  • [5] The Laplacian energy of some Laplacian integral graphs
    Maia de Abreu, Nair Maria
    Vinagre, Cybele T. M.
    Bonifacio, Andrea Soares
    Gutman, Ivan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 447 - 460
  • [6] On the Laplacian spectrum of (α, ω)-graphs
    Kelmans, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (06) : 673 - 682
  • [7] Laplacian controllability classes for threshold graphs
    Aguilar, Cesar O.
    Gharesifard, Bahman
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 575 - 586
  • [8] Laplacian Controllability of Oriented Threshold Graphs
    Mousavi, Shima Sadat
    Kouvelas, Anastasious
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2687 - 2692
  • [9] Indecomposable Laplacian integral graphs
    Grone, Robert
    Merris, Russell
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1565 - 1570
  • [10] Constructably Laplacian integral graphs
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 3 - 21