On the Conjecture for Certain Laplacian Integral Spectrum of Graphs

被引:12
|
作者
Das, Kinkar Ch. [1 ]
Lee, Sang-Gu [1 ]
Cheon, Gi-Sang [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
graph; Laplacian matrix; largest eigenvalue; second smallest eigenvalue; Laplacian spectrum; diameter; EIGENVALUES; ACHIEVE;
D O I
10.1002/jgt.20412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph of order n with Laplacian spectrum {lambda(n), lambda(n-1), ... , lambda(1)} where 0=lambda(n) <= lambda(n-1) <= ... <= lambda(1). If there exists a graph whose Laplacian spectrum is S= {0, 1, ... , n-1}, then we say that S is Laplacian realizable. In [6], Fallat et al. posed a conjecture that S is not Laplacian realizable for any n >= 2 and showed that the conjecture holds for n <= 11, n is prime, or n = 2, 3 (mod 4). In this article, we have proved that (i) if G is connected and lambda(1) = n-1 then G has diameter either 2 or 3, and (ii) if lambda(1) = n-1 and lambda(n-1)= 1 then both G and (G) over bar, the complement of G, have diameter 3. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 106-113, 2010
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [1] Laplacian Controllability for Graphs with Integral Laplacian Spectrum
    Zoran Stanić
    Mediterranean Journal of Mathematics, 2021, 18
  • [2] Laplacian Controllability for Graphs with Integral Laplacian Spectrum
    Stanic, Zoran
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [3] On a Conjecture on a Laplacian Matrix with Distinct Integral Spectrum
    Goldberger, Assaf
    Neumann, Michael
    JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 178 - 208
  • [4] Signed graphs with integral net Laplacian spectrum
    Andelic, M.
    Koledin, T.
    Stanic, Z.
    Wang, J.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (02) : 177 - 184
  • [5] On the Laplacian spectrum of (α, ω)-graphs
    Kelmans, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (06) : 673 - 682
  • [6] The Laplacian energy of some Laplacian integral graphs
    Maia de Abreu, Nair Maria
    Vinagre, Cybele T. M.
    Bonifacio, Andrea Soares
    Gutman, Ivan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 447 - 460
  • [7] Indecomposable Laplacian integral graphs
    Grone, Robert
    Merris, Russell
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1565 - 1570
  • [8] Constructably Laplacian integral graphs
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 3 - 21
  • [9] Total Graphs Are Laplacian Integral
    Dolzan, David
    Oblak, Polona
    ALGEBRA COLLOQUIUM, 2022, 29 (03) : 427 - 436
  • [10] On the Laplacian integral tricyclic graphs
    Huang, Xueyi
    Huang, Qiongxiang
    Wen, Fei
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1356 - 1371