Laplacian Controllability for Graphs with Integral Laplacian Spectrum

被引:0
|
作者
Zoran Stanić
机构
[1] University of Belgrade,Faculty of Mathematics
来源
关键词
Laplacian eigenvalues; Controllability; Integral Laplacian spectrum; Cograph; Threshold graph; 05C50; 93B05; 93C05;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a graph with n vertices, LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document} is its Laplacian matrix, and b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document} is a binary vector of length n, then the pair (LG,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_G, \mathbf {b})$$\end{document} is said to be controllable, and we also say that G is Laplacian controllable for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document}, if b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document} is non-orthogonal to any of the eigenvectors of LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document}. It is known that if G is Laplacian controllable, then it has no repeated Laplacian eigenvalues. If G has no repeated Laplacian eigenvalues and each of them is an integer, then G is decomposable into a (dominate) induced subgraph, say H, and another induced subgraph with at most three vertices. We express the Laplacian controllability of G in terms of that of H. In this way, we address the question on the Laplacian controllability of cographs and, in particular, threshold graphs.
引用
收藏
相关论文
共 50 条
  • [41] On the Laplacian integral (k - 1)-cyclic graphs
    Huang, Xueyi
    Huang, Qiongxiang
    ARS COMBINATORIA, 2015, 119 : 247 - 256
  • [42] Laplacian Controllability of a Class of Non-Simple Ring Graphs
    Yang, Ping-Yen
    Hsu, Shun-Pin
    IFAC PAPERSONLINE, 2020, 53 (02): : 3427 - 3432
  • [43] Signless Laplacian energy, distance Laplacian energy and distance signless Laplacian spectrum of unitary addition Cayley graphs
    Naveen, Palanivel
    Chithra, A. V.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22): : 7514 - 7535
  • [44] On the spectrum of the normalized Laplacian of iterated triangulations of graphs
    Xie, Pinchen
    Zhang, Zhongzhi
    Comellas, Francesc
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 1123 - 1129
  • [45] DISTANCE (SIGNLESS) LAPLACIAN SPECTRUM OF DUMBBELL GRAPHS
    Kaliyaperumal, Sakthidevi
    Desikan, Kalyani
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (04) : 207 - 216
  • [46] Normalized Laplacian spectrum of complete multipartite graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    Discrete Applied Mathematics, 2022, 284 : 234 - 245
  • [47] On a Conjecture on a Laplacian Matrix with Distinct Integral Spectrum
    Goldberger, Assaf
    Neumann, Michael
    JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 178 - 208
  • [48] The signless Laplacian spectrum of rooted product of graphs
    Maghsoudi, Maryam
    Heydari, Abbas
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (06)
  • [49] Normalized Laplacian spectrum of complete multipartite graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 234 - 245
  • [50] On the Laplacian spectrum of k-symmetric graphs
    Moon, Sunyo
    Yoo, Hyungkee
    DISCRETE MATHEMATICS, 2024, 347 (01)