Laplacian Controllability for Graphs with Integral Laplacian Spectrum

被引:0
|
作者
Zoran Stanić
机构
[1] University of Belgrade,Faculty of Mathematics
来源
关键词
Laplacian eigenvalues; Controllability; Integral Laplacian spectrum; Cograph; Threshold graph; 05C50; 93B05; 93C05;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a graph with n vertices, LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document} is its Laplacian matrix, and b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document} is a binary vector of length n, then the pair (LG,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_G, \mathbf {b})$$\end{document} is said to be controllable, and we also say that G is Laplacian controllable for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document}, if b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {b}$$\end{document} is non-orthogonal to any of the eigenvectors of LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document}. It is known that if G is Laplacian controllable, then it has no repeated Laplacian eigenvalues. If G has no repeated Laplacian eigenvalues and each of them is an integer, then G is decomposable into a (dominate) induced subgraph, say H, and another induced subgraph with at most three vertices. We express the Laplacian controllability of G in terms of that of H. In this way, we address the question on the Laplacian controllability of cographs and, in particular, threshold graphs.
引用
收藏
相关论文
共 50 条
  • [21] On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs
    Mojgan Afkhami
    Zahra Barati
    Kazem Khashyarmanesh
    Ricerche di Matematica, 2022, 71 : 349 - 365
  • [22] LAPLACIAN INTEGRAL SUBCUBIC SIGNED GRAPHS
    Wang, Dijian
    Hou, Yaoping
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 163 - 176
  • [23] On the Adjacency, Laplacian, and Signless Laplacian Spectrum of Coalescence of Complete Graphs
    Jog, S. R.
    Kotambari, Raju
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [24] DEGREE MAXIMAL GRAPHS ARE LAPLACIAN INTEGRAL
    MERRIS, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 : 381 - 389
  • [25] Laplacian integral graphs in S(a, b)
    de Lima, Leonardo Silva
    de Abreu, Nair Maria Maia
    Oliveira, Carla Silva
    Alvarez de Freitas, Maria Aguieiras
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 136 - 145
  • [26] On Laplacian spectrum of unitary Cayley graphs
    Pirzada, S.
    Barati, Z.
    Afkhami, M.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2021, 13 (02) : 251 - 264
  • [27] SPECTRUM OF THE LAPLACIAN, GRAPHS AND TOPOLOGY OF FELL
    BURGER, M
    COMMENTARII MATHEMATICI HELVETICI, 1988, 63 (02) : 226 - 252
  • [28] THE LAPLACIAN SPECTRUM OF CORONA OF TWO GRAPHS
    Liu, Qun
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (01): : 163 - 170
  • [29] On the Distance Signless Laplacian Spectrum of Graphs
    A. Alhevaz
    M. Baghipur
    E. Hashemi
    H. S. Ramane
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2603 - 2621
  • [30] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621