Bifurcation analysis of reaction–diffusion Schnakenberg model

被引:3
|
作者
Ping Liu
Junping Shi
Yuwen Wang
Xiuhong Feng
机构
[1] Harbin Normal University,Y.Y. Tseng Functional Analysis Research Center and School of Mathematical Sciences
[2] College of William and Mary,Department of Mathematics
来源
关键词
Schnakenberg model; Steady state solution; Hopf bifurcation; Steady state bifurcation; Pattern formation; 58F07; 58C28; 58C15; 34C23; 35B20; 35B32;
D O I
暂无
中图分类号
学科分类号
摘要
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
引用
收藏
页码:2001 / 2019
页数:18
相关论文
共 50 条
  • [31] Bifurcation and Control of A Neuron Model with Delays and Reaction-diffusion
    Wang Ling
    Zhao Hongyong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3273 - 3278
  • [32] Stability and bifurcation in a reaction–diffusion–advection predator–prey model
    Yihuan Sun
    Shanshan Chen
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [33] A strong technique for solving the fractional model of multi-dimensional Schnakenberg reaction-diffusion system
    Jagatheeshwari, R.
    Ravichandran, C.
    Veeresha, P.
    Nisar, Kottakkaran Sooppy
    MODERN PHYSICS LETTERS B, 2025,
  • [34] Turing-Hopf Bifurcation Analysis of the Sel'kov-Schnakenberg System
    Liu, Yuying
    Wei, Xin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (01):
  • [35] Analysis of bifurcation patterns in reaction-diffusion systems: Effect of external noise on the Brusselator model
    Yerrapragada, SS
    Bandyopadhyay, JK
    Jayaraman, VK
    Kulkarni, BD
    PHYSICAL REVIEW E, 1997, 55 (05): : 5248 - 5260
  • [36] ASYMPTOTIC AND BIFURCATION ANALYSIS OF WAVE-PINNING IN A REACTION-DIFFUSION MODEL FOR CELL POLARIZATION
    Mori, Yoichiro
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1401 - 1427
  • [37] Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion
    Gambino G.
    Lombardo M.C.
    Lupo S.
    Sammartino M.
    Ricerche di Matematica, 2016, 65 (2) : 449 - 467
  • [38] Stability and bifurcation analysis of a reaction–diffusion equation with distributed delay
    Wenjie Zuo
    Yongli Song
    Nonlinear Dynamics, 2015, 79 : 437 - 454
  • [39] The Stability and Slow Dynamics of Localized Spot Patterns for the 3-D Schnakenberg Reaction-Diffusion Model
    Tzou, J. C.
    Xie, S.
    Kolokolnikov, T.
    Ward, M. J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 294 - 336
  • [40] STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM
    Li, Bo
    Zhang, Xiaoyan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1009 - 1023