STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM

被引:10
|
作者
Li, Bo [1 ]
Zhang, Xiaoyan [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
关键词
PREDATOR-PREY SYSTEM; NONMONOTONIC FUNCTIONAL-RESPONSE; HOPF-BIFURCATION ANALYSIS; QUALITATIVE-ANALYSIS; CROSS-DIFFUSION; STATIONARY PATTERNS; TURING PATTERNS; MODEL; GLYCOLYSIS; STABILITY;
D O I
10.3934/dcdss.2017053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with a reaction-diffusion model, known as the Sel'kov-Schnakenberg system, and study the associated steady state problem. We obtain existence and nonexistence results of nonconstant steady states, which in turn imply the criteria for the formation of spatial pattern (especially, Turing pattern). Our results reveal the different roles of the diffusion rates of the two reactants in generating spatial pattern.
引用
收藏
页码:1009 / 1023
页数:15
相关论文
共 50 条
  • [1] Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system
    Li, Bo
    Wang, Fangfang
    Zhang, Xiaoyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 537 - 558
  • [2] Bifurcations in a General Delay Sel'kov-Schnakenberg Reaction-Diffusion System
    Li, Yanqiu
    Zhang, Lei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [3] Turing-Hopf Bifurcation Analysis of the Sel'kov-Schnakenberg System
    Liu, Yuying
    Wei, Xin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (01):
  • [4] Turing instability and pattern formation in a diffusive Sel'kov-Schnakenberg system
    Wang, Yong
    Zhou, Xu
    Jiang, Weihua
    Qi, Liangping
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (05) : 1036 - 1062
  • [5] An Efficient Linearized Difference Algorithm for a Diffusive Sel′kov-Schnakenberg System
    Wang, Yange
    Bai, Xixian
    MATHEMATICS, 2024, 12 (06)
  • [6] Hopf bifurcation analysis of a reaction-diffusion Sel'kov system
    Han, Wei
    Bao, Zhenhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 633 - 641
  • [7] Finite-time control of the discrete Sel'kov-Schnakenberg model: Synchronization and simulations
    Al-Taani, Hussein
    Hammad, Ma'mon Abu
    Alomari, Omar
    Bendib, Issam
    Ouannas, Adel
    AIP ADVANCES, 2025, 15 (02)
  • [8] Turing instability and pattern formation in a diffusive Sel’kov–Schnakenberg system
    Yong Wang
    Xu Zhou
    Weihua Jiang
    Liangping Qi
    Journal of Mathematical Chemistry, 2023, 61 : 1036 - 1062
  • [9] Qualitative analysis of steady states to the Sel'kov model
    Peng, Rui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (02) : 386 - 398
  • [10] REACTION-DIFFUSION COUPLED SYSTEM WITH MULTIPLE STEADY STATES
    SESHADRI, MS
    JOURNAL OF THEORETICAL BIOLOGY, 1974, 47 (02) : 351 - 365